IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-022-34482-4.html
   My bibliography  Save this article

Black phosphorous-based human-machine communication interface

Author

Listed:
  • Jayraj V. Vaghasiya

    (University of Chemistry and Technology Prague)

  • Carmen C. Mayorga-Martinez

    (University of Chemistry and Technology Prague)

  • Jan Vyskočil

    (University of Chemistry and Technology Prague)

  • Martin Pumera

    (University of Chemistry and Technology Prague
    Yonsei University
    VSB—Technical University of Ostrava
    China Medical University Hospital, China Medical University)

Abstract

Assistive technology involving auditory feedback is generally utilized by those who are visually impaired or have speech and language difficulties. Therefore, here we concentrate on an auditory human-machine interface that uses audio as a platform for conveying information between visually or speech-disabled users and society. We develop a piezoresistive tactile sensor based on a black phosphorous and polyaniline (BP@PANI) composite by the facile chemical oxidative polymerization of aniline on cotton fabric. Taking advantage of BP’s puckered honeycomb lattice structure and superior electrical properties as well as the vast wavy fabric surface, this BP@PANI-based tactile sensor exhibits excellent sensitivity, low-pressure sensitivity, reasonable response time, and good cycle stability. For a real-world application, a prototype device employs six BP@PANI tactile sensors that correspond to braille characters and can convert pressed text into audio on reading or typing to assist visually or speech-disabled persons. Overall, this research offers promising insight into the material candidates and strategies for the development of auditory feedback devices based on layered and 2D materials for human-machine interfaces.

Suggested Citation

  • Jayraj V. Vaghasiya & Carmen C. Mayorga-Martinez & Jan Vyskočil & Martin Pumera, 2023. "Black phosphorous-based human-machine communication interface," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-022-34482-4
    DOI: 10.1038/s41467-022-34482-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-34482-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-34482-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Shumao Cui & Haihui Pu & Spencer A. Wells & Zhenhai Wen & Shun Mao & Jingbo Chang & Mark C. Hersam & Junhong Chen, 2015. "Ultrahigh sensitivity and layer-dependent sensing performance of phosphorene-based gas sensors," Nature Communications, Nature, vol. 6(1), pages 1-9, December.
    2. Subramanian Sundaram & Petr Kellnhofer & Yunzhu Li & Jun-Yan Zhu & Antonio Torralba & Wojciech Matusik, 2019. "Learning the signatures of the human grasp using a scalable tactile glove," Nature, Nature, vol. 569(7758), pages 698-702, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Radu Valentin & Croitoru Ionut Marius & Tabirca Alina Iuliana & Stoica Silviu-Ionel, 2023. "Ai Components For Performance Measurement - A Bibliometric Approach," Annals - Economy Series, Constantin Brancusi University, Faculty of Economics, vol. 6, pages 286-300, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shijing Zhang & Yingxiang Liu & Jie Deng & Xiang Gao & Jing Li & Weiyi Wang & Mingxin Xun & Xuefeng Ma & Qingbing Chang & Junkao Liu & Weishan Chen & Jie Zhao, 2023. "Piezo robotic hand for motion manipulation from micro to macro," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Kyeonghee Lim & Jakyoung Lee & Sumin Kim & Myoungjae Oh & Chin Su Koh & Hunkyu Seo & Yeon-Mi Hong & Won Gi Chung & Jiuk Jang & Jung Ah Lim & Hyun Ho Jung & Jang-Ung Park, 2024. "Interference haptic stimulation and consistent quantitative tactility in transparent electrotactile screen with pressure-sensitive transistors," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    3. Rui Chen & Tao Luo & Jincheng Wang & Renpeng Wang & Chen Zhang & Yu Xie & Lifeng Qin & Haimin Yao & Wei Zhou, 2023. "Nonlinearity synergy: An elegant strategy for realizing high-sensitivity and wide-linear-range pressure sensing," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. Arnab Maity & Haihui Pu & Xiaoyu Sui & Jingbo Chang & Kai J. Bottum & Bing Jin & Guihua Zhou & Yale Wang & Ganhua Lu & Junhong Chen, 2023. "Scalable graphene sensor array for real-time toxins monitoring in flowing water," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Shilong Zhong & Zhaoxiang Zhu & Qizheng Huo & Yubo Long & Li Gong & Zetong Ma & Dingshan Yu & Yi Zhang & Weien Liang & Wei Liu & Cheng Wang & Zhongke Yuan & Yuzhao Yang & Shaolin Lu & Yujie Chen & Zhi, 2024. "Designed wrinkles for optical encryption and flexible integrated circuit carrier board," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    6. Haojie Lu & Yong Zhang & Mengjia Zhu & Shuo Li & Huarun Liang & Peng Bi & Shuai Wang & Haomin Wang & Linli Gan & Xun-En Wu & Yingying Zhang, 2024. "Intelligent perceptual textiles based on ionic-conductive and strong silk fibers," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    7. Yijia Lu & Han Tian & Jia Cheng & Fei Zhu & Bin Liu & Shanshan Wei & Linhong Ji & Zhong Lin Wang, 2022. "Decoding lip language using triboelectric sensors with deep learning," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    8. Min Chen & Jingyu Ouyang & Aijia Jian & Jia Liu & Pan Li & Yixue Hao & Yuchen Gong & Jiayu Hu & Jing Zhou & Rui Wang & Jiaxi Wang & Long Hu & Yuwei Wang & Ju Ouyang & Jing Zhang & Chong Hou & Lei Wei , 2022. "Imperceptible, designable, and scalable braided electronic cord," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    9. Bujingda Zheng & Yunchao Xie & Shichen Xu & Andrew C. Meng & Shaoyun Wang & Yuchao Wu & Shuhong Yang & Caixia Wan & Guoliang Huang & James M. Tour & Jian Lin, 2024. "Programmed multimaterial assembly by synergized 3D printing and freeform laser induction," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    10. Zhongda Sun & Minglu Zhu & Xuechuan Shan & Chengkuo Lee, 2022. "Augmented tactile-perception and haptic-feedback rings as human-machine interfaces aiming for immersive interactions," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    11. Hyung Woo Choi & Dong-Wook Shin & Jiajie Yang & Sanghyo Lee & Cátia Figueiredo & Stefano Sinopoli & Kay Ullrich & Petar Jovančić & Alessio Marrani & Roberto Momentè & João Gomes & Rita Branquinho & Um, 2022. "Smart textile lighting/display system with multifunctional fibre devices for large scale smart home and IoT applications," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    12. Yiyue Luo & Chao Liu & Young Joong Lee & Joseph DelPreto & Kui Wu & Michael Foshey & Daniela Rus & Tomás Palacios & Yunzhu Li & Antonio Torralba & Wojciech Matusik, 2024. "Adaptive tactile interaction transfer via digitally embroidered smart gloves," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    13. Seung-Hyun Sung & Jun Min Suh & Yun Ji Hwang & Ho Won Jang & Jeon Gue Park & Seong Chan Jun, 2024. "Data-centric artificial olfactory system based on the eigengraph," Nature Communications, Nature, vol. 15(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-022-34482-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.