IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-34918-x.html
   My bibliography  Save this article

Imperceptible, designable, and scalable braided electronic cord

Author

Listed:
  • Min Chen

    (Huazhong University of Science and Technology)

  • Jingyu Ouyang

    (Huazhong University of Science and Technology)

  • Aijia Jian

    (Huazhong University of Science and Technology)

  • Jia Liu

    (Huazhong University of Science and Technology)

  • Pan Li

    (Huazhong University of Science and Technology)

  • Yixue Hao

    (Huazhong University of Science and Technology)

  • Yuchen Gong

    (Huazhong University of Science and Technology)

  • Jiayu Hu

    (Huazhong University of Science and Technology)

  • Jing Zhou

    (Huazhong University of Science and Technology)

  • Rui Wang

    (Huazhong University of Science and Technology)

  • Jiaxi Wang

    (Huazhong University of Science and Technology)

  • Long Hu

    (Huazhong University of Science and Technology)

  • Yuwei Wang

    (Huazhong University of Science and Technology)

  • Ju Ouyang

    (Huazhong University of Science and Technology)

  • Jing Zhang

    (China University of Geosciences (Wuhan))

  • Chong Hou

    (Huazhong University of Science and Technology
    Huazhong University of Science and Technology)

  • Lei Wei

    (Nanyang Technological University)

  • Huamin Zhou

    (Huazhong University of Science and Technology)

  • Dingyu Zhang

    (Wuhan Jinyintan Hospital
    Hubei Provincial Health and Health Committee)

  • Guangming Tao

    (Huazhong University of Science and Technology
    Huazhong University of Science and Technology)

Abstract

Flexible sensors, friendly interfaces, and intelligent recognition are important in the research of novel human-computer interaction and the development of smart devices. However, major challenges are still encountered in designing user-centered smart devices with natural, convenient, and efficient interfaces. Inspired by the characteristics of textile-based flexible electronic sensors, in this article, we report a braided electronic cord with a low-cost, and automated fabrication to realize imperceptible, designable, and scalable user interfaces. The braided electronic cord is in a miniaturized form, which is suitable for being integrated with various occasions in life. To achieve high-precision interaction, a multi-feature fusion algorithm is designed to recognize gestures of different positions, different contact areas, and different movements performed on a single braided electronic cord. The recognized action results are fed back to varieties of interactive terminals, which show the diversity of cord forms and applications. Our braided electronic cord with the features of user friendliness, excellent durability and rich interaction mode will greatly promote the development of human-machine integration in the future.

Suggested Citation

  • Min Chen & Jingyu Ouyang & Aijia Jian & Jia Liu & Pan Li & Yixue Hao & Yuchen Gong & Jiayu Hu & Jing Zhou & Rui Wang & Jiaxi Wang & Long Hu & Yuwei Wang & Ju Ouyang & Jing Zhang & Chong Hou & Lei Wei , 2022. "Imperceptible, designable, and scalable braided electronic cord," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34918-x
    DOI: 10.1038/s41467-022-34918-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-34918-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-34918-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xinge Yu & Zhaoqian Xie & Yang Yu & Jungyup Lee & Abraham Vazquez-Guardado & Haiwen Luan & Jasper Ruban & Xin Ning & Aadeel Akhtar & Dengfeng Li & Bowen Ji & Yiming Liu & Rujie Sun & Jingyue Cao & Qin, 2019. "Skin-integrated wireless haptic interfaces for virtual and augmented reality," Nature, Nature, vol. 575(7783), pages 473-479, November.
    2. Hyung Woo Choi & Dong-Wook Shin & Jiajie Yang & Sanghyo Lee & Cátia Figueiredo & Stefano Sinopoli & Kay Ullrich & Petar Jovančić & Alessio Marrani & Roberto Momentè & João Gomes & Rita Branquinho & Um, 2022. "Smart textile lighting/display system with multifunctional fibre devices for large scale smart home and IoT applications," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Wei Yan & Grace Noel & Gabriel Loke & Elizabeth Meiklejohn & Tural Khudiyev & Juliette Marion & Guanchun Rui & Jinuan Lin & Juliana Cherston & Atharva Sahasrabudhe & Joao Wilbert & Irmandy Wicaksono &, 2022. "Single fibre enables acoustic fabrics via nanometre-scale vibrations," Nature, Nature, vol. 603(7902), pages 616-623, March.
    4. Subramanian Sundaram & Petr Kellnhofer & Yunzhu Li & Jun-Yan Zhu & Antonio Torralba & Wojciech Matusik, 2019. "Learning the signatures of the human grasp using a scalable tactile glove," Nature, Nature, vol. 569(7758), pages 698-702, May.
    5. Feng Wen & Zixuan Zhang & Tianyiyi He & Chengkuo Lee, 2021. "AI enabled sign language recognition and VR space bidirectional communication using triboelectric smart glove," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shaomei Lin & Weifeng Yang & Xubin Zhu & Yubin Lan & Kerui Li & Qinghong Zhang & Yaogang Li & Chengyi Hou & Hongzhi Wang, 2024. "Triboelectric micro-flexure-sensitive fiber electronics," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhongda Sun & Minglu Zhu & Xuechuan Shan & Chengkuo Lee, 2022. "Augmented tactile-perception and haptic-feedback rings as human-machine interfaces aiming for immersive interactions," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Yijia Lu & Han Tian & Jia Cheng & Fei Zhu & Bin Liu & Shanshan Wei & Linhong Ji & Zhong Lin Wang, 2022. "Decoding lip language using triboelectric sensors with deep learning," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Yiyue Luo & Chao Liu & Young Joong Lee & Joseph DelPreto & Kui Wu & Michael Foshey & Daniela Rus & Tomás Palacios & Yunzhu Li & Antonio Torralba & Wojciech Matusik, 2024. "Adaptive tactile interaction transfer via digitally embroidered smart gloves," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    4. Shijing Zhang & Yingxiang Liu & Jie Deng & Xiang Gao & Jing Li & Weiyi Wang & Mingxin Xun & Xuefeng Ma & Qingbing Chang & Junkao Liu & Weishan Chen & Jie Zhao, 2023. "Piezo robotic hand for motion manipulation from micro to macro," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. Haisheng Xia & Yuchong Zhang & Nona Rajabi & Farzaneh Taleb & Qunting Yang & Danica Kragic & Zhijun Li, 2024. "Shaping high-performance wearable robots for human motor and sensory reconstruction and enhancement," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    6. Zhao, Lin-Chuan & Zhou, Teng & Chang, Si-Deng & Zou, Hong-Xiang & Gao, Qiu-Hua & Wu, Zhi-Yuan & Yan, Ge & Wei, Ke-Xiang & Yeatman, Eric M. & Meng, Guang & Zhang, Wen-Ming, 2024. "A disposable cup inspired smart floor for trajectory recognition and human-interactive sensing," Applied Energy, Elsevier, vol. 357(C).
    7. Won Bae Han & Gwan-Jin Ko & Kang-Gon Lee & Donghak Kim & Joong Hoon Lee & Seung Min Yang & Dong-Je Kim & Jeong-Woong Shin & Tae-Min Jang & Sungkeun Han & Honglei Zhou & Heeseok Kang & Jun Hyeon Lim & , 2023. "Ultra-stretchable and biodegradable elastomers for soft, transient electronics," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    8. Chong Li & Xinxin Liao & Zhi-Ke Peng & Guang Meng & Qingbo He, 2023. "Highly sensitive and broadband meta-mechanoreceptor via mechanical frequency-division multiplexing," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    9. Pengwei Wang & Xiaohao Ma & Zhiqiang Lin & Fan Chen & Zijian Chen & Hong Hu & Hailong Xu & Xinyi Zhang & Yuqing Shi & Qiyao Huang & Yuanjing Lin & Zijian Zheng, 2024. "Well-defined in-textile photolithography towards permeable textile electronics," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    10. Zhuomin Zhang & Xuemu Li & Zehua Peng & Xiaodong Yan & Shiyuan Liu & Ying Hong & Yao Shan & Xiaote Xu & Lihan Jin & Bingren Liu & Xinyu Zhang & Yu Chai & Shujun Zhang & Alex K.-Y. Jen & Zhengbao Yang, 2023. "Active self-assembly of piezoelectric biomolecular films via synergistic nanoconfinement and in-situ poling," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    11. Kyeonghee Lim & Jakyoung Lee & Sumin Kim & Myoungjae Oh & Chin Su Koh & Hunkyu Seo & Yeon-Mi Hong & Won Gi Chung & Jiuk Jang & Jung Ah Lim & Hyun Ho Jung & Jang-Ung Park, 2024. "Interference haptic stimulation and consistent quantitative tactility in transparent electrotactile screen with pressure-sensitive transistors," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    12. Guorui Li & Tuck-Whye Wong & Benjamin Shih & Chunyu Guo & Luwen Wang & Jiaqi Liu & Tao Wang & Xiaobo Liu & Jiayao Yan & Baosheng Wu & Fajun Yu & Yunsai Chen & Yiming Liang & Yaoting Xue & Chengjun Wan, 2023. "Bioinspired soft robots for deep-sea exploration," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    13. Rui Chen & Tao Luo & Jincheng Wang & Renpeng Wang & Chen Zhang & Yu Xie & Lifeng Qin & Haimin Yao & Wei Zhou, 2023. "Nonlinearity synergy: An elegant strategy for realizing high-sensitivity and wide-linear-range pressure sensing," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    14. Taemin Kim & Yejee Shin & Kyowon Kang & Kiho Kim & Gwanho Kim & Yunsu Byeon & Hwayeon Kim & Yuyan Gao & Jeong Ryong Lee & Geonhui Son & Taeseong Kim & Yohan Jun & Jihyun Kim & Jinyoung Lee & Seyun Um , 2022. "Ultrathin crystalline-silicon-based strain gauges with deep learning algorithms for silent speech interfaces," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    15. Shun An & Hanrui Zhu & Chunzhi Guo & Benwei Fu & Chengyi Song & Peng Tao & Wen Shang & Tao Deng, 2022. "Noncontact human-machine interaction based on hand-responsive infrared structural color," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    16. Dongjin Kim & Baekgyeom Kim & Bongsu Shin & Dongwook Shin & Chang-Kun Lee & Jae-Seung Chung & Juwon Seo & Yun-Tae Kim & Geeyoung Sung & Wontaek Seo & Sunil Kim & Sunghoon Hong & Sungwoo Hwang & Seungy, 2022. "Actuating compact wearable augmented reality devices by multifunctional artificial muscle," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    17. Shuzhi Liu & Jianmin Zeng & Zhixin Wu & Han Hu & Ao Xu & Xiaohe Huang & Weilin Chen & Qilai Chen & Zhe Yu & Yinyu Zhao & Rong Wang & Tingting Han & Chao Li & Pingqi Gao & Hyunwoo Kim & Seung Jae Baik , 2023. "An ultrasmall organic synapse for neuromorphic computing," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    18. Yiming Liu & Shengxin Jia & Chun Ki Yiu & Wooyoung Park & Zhenlin Chen & Jin Nan & Xingcan Huang & Hongting Chen & Wenyang Li & Yuyu Gao & Weike Song & Tomoyuki Yokota & Takao Someya & Zhao Zhao & Yuh, 2024. "Intelligent wearable olfactory interface for latency-free mixed reality and fast olfactory enhancement," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    19. Shilong Zhong & Zhaoxiang Zhu & Qizheng Huo & Yubo Long & Li Gong & Zetong Ma & Dingshan Yu & Yi Zhang & Weien Liang & Wei Liu & Cheng Wang & Zhongke Yuan & Yuzhao Yang & Shaolin Lu & Yujie Chen & Zhi, 2024. "Designed wrinkles for optical encryption and flexible integrated circuit carrier board," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    20. Hengtian Zhu & Huan Yang & Siqi Xu & Yuanyuan Ma & Shugeng Zhu & Zhengyi Mao & Weiwei Chen & Zizhong Hu & Rongrong Pan & Yurui Xu & Yifeng Xiong & Ye Chen & Yanqing Lu & Xinghai Ning & Dechen Jiang & , 2024. "Frequency-encoded eye tracking smart contact lens for human–machine interaction," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34918-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.