IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-45059-8.html
   My bibliography  Save this article

Adaptive tactile interaction transfer via digitally embroidered smart gloves

Author

Listed:
  • Yiyue Luo

    (Massachusetts Institute of Technology)

  • Chao Liu

    (Massachusetts Institute of Technology)

  • Young Joong Lee

    (Massachusetts Institute of Technology)

  • Joseph DelPreto

    (Massachusetts Institute of Technology)

  • Kui Wu

    (LightSpeed Studios)

  • Michael Foshey

    (Massachusetts Institute of Technology)

  • Daniela Rus

    (Massachusetts Institute of Technology)

  • Tomás Palacios

    (Massachusetts Institute of Technology)

  • Yunzhu Li

    (University of Illinois Urbana-Champaign)

  • Antonio Torralba

    (Massachusetts Institute of Technology)

  • Wojciech Matusik

    (Massachusetts Institute of Technology)

Abstract

Human-machine interfaces for capturing, conveying, and sharing tactile information across time and space hold immense potential for healthcare, augmented and virtual reality, human-robot collaboration, and skill development. To realize this potential, such interfaces should be wearable, unobtrusive, and scalable regarding both resolution and body coverage. Taking a step towards this vision, we present a textile-based wearable human-machine interface with integrated tactile sensors and vibrotactile haptic actuators that are digitally designed and rapidly fabricated. We leverage a digital embroidery machine to seamlessly embed piezoresistive force sensors and arrays of vibrotactile actuators into textiles in a customizable, scalable, and modular manner. We use this process to create gloves that can record, reproduce, and transfer tactile interactions. User studies investigate how people perceive the sensations reproduced by our gloves with integrated vibrotactile haptic actuators. To improve the effectiveness of tactile interaction transfer, we develop a machine-learning pipeline that adaptively models how each individual user reacts to haptic sensations and then optimizes haptic feedback parameters. Our interface showcases adaptive tactile interaction transfer through the implementation of three end-to-end systems: alleviating tactile occlusion, guiding people to perform physical skills, and enabling responsive robot teleoperation.

Suggested Citation

  • Yiyue Luo & Chao Liu & Young Joong Lee & Joseph DelPreto & Kui Wu & Michael Foshey & Daniela Rus & Tomás Palacios & Yunzhu Li & Antonio Torralba & Wojciech Matusik, 2024. "Adaptive tactile interaction transfer via digitally embroidered smart gloves," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45059-8
    DOI: 10.1038/s41467-024-45059-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-45059-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-45059-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xinge Yu & Zhaoqian Xie & Yang Yu & Jungyup Lee & Abraham Vazquez-Guardado & Haiwen Luan & Jasper Ruban & Xin Ning & Aadeel Akhtar & Dengfeng Li & Bowen Ji & Yiming Liu & Rujie Sun & Jingyue Cao & Qin, 2019. "Skin-integrated wireless haptic interfaces for virtual and augmented reality," Nature, Nature, vol. 575(7783), pages 473-479, November.
    2. Ryuji Hirayama & Diego Martinez Plasencia & Nobuyuki Masuda & Sriram Subramanian, 2019. "A volumetric display for visual, tactile and audio presentation using acoustic trapping," Nature, Nature, vol. 575(7782), pages 320-323, November.
    3. Zhongda Sun & Minglu Zhu & Xuechuan Shan & Chengkuo Lee, 2022. "Augmented tactile-perception and haptic-feedback rings as human-machine interfaces aiming for immersive interactions," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    4. Subramanian Sundaram & Petr Kellnhofer & Yunzhu Li & Jun-Yan Zhu & Antonio Torralba & Wojciech Matusik, 2019. "Learning the signatures of the human grasp using a scalable tactile glove," Nature, Nature, vol. 569(7758), pages 698-702, May.
    5. David Matthews, 2018. "Virtual-reality applications give science a new dimension," Nature, Nature, vol. 557(7703), pages 127-128, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yiming Liu & Chun Ki Yiu & Zhao Zhao & Wooyoung Park & Rui Shi & Xingcan Huang & Yuyang Zeng & Kuan Wang & Tsz Hung Wong & Shengxin Jia & Jingkun Zhou & Zhan Gao & Ling Zhao & Kuanming Yao & Jian Li &, 2023. "Soft, miniaturized, wireless olfactory interface for virtual reality," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Haisheng Xia & Yuchong Zhang & Nona Rajabi & Farzaneh Taleb & Qunting Yang & Danica Kragic & Zhijun Li, 2024. "Shaping high-performance wearable robots for human motor and sensory reconstruction and enhancement," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Min Chen & Jingyu Ouyang & Aijia Jian & Jia Liu & Pan Li & Yixue Hao & Yuchen Gong & Jiayu Hu & Jing Zhou & Rui Wang & Jiaxi Wang & Long Hu & Yuwei Wang & Ju Ouyang & Jing Zhang & Chong Hou & Lei Wei , 2022. "Imperceptible, designable, and scalable braided electronic cord," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Zhongda Sun & Minglu Zhu & Xuechuan Shan & Chengkuo Lee, 2022. "Augmented tactile-perception and haptic-feedback rings as human-machine interfaces aiming for immersive interactions," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    5. Chunpeng Jiang & Wenqiang Xu & Yutong Li & Zhenjun Yu & Longchun Wang & Xiaotong Hu & Zhengyi Xie & Qingkun Liu & Bin Yang & Xiaolin Wang & Wenxin Du & Tutian Tang & Dongzhe Zheng & Siqiong Yao & Cewu, 2024. "Capturing forceful interaction with deformable objects using a deep learning-powered stretchable tactile array," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    6. Yiming Liu & Shengxin Jia & Chun Ki Yiu & Wooyoung Park & Zhenlin Chen & Jin Nan & Xingcan Huang & Hongting Chen & Wenyang Li & Yuyu Gao & Weike Song & Tomoyuki Yokota & Takao Someya & Zhao Zhao & Yuh, 2024. "Intelligent wearable olfactory interface for latency-free mixed reality and fast olfactory enhancement," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    7. Shijing Zhang & Yingxiang Liu & Jie Deng & Xiang Gao & Jing Li & Weiyi Wang & Mingxin Xun & Xuefeng Ma & Qingbing Chang & Junkao Liu & Weishan Chen & Jie Zhao, 2023. "Piezo robotic hand for motion manipulation from micro to macro," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    8. Hengtian Zhu & Huan Yang & Siqi Xu & Yuanyuan Ma & Shugeng Zhu & Zhengyi Mao & Weiwei Chen & Zizhong Hu & Rongrong Pan & Yurui Xu & Yifeng Xiong & Ye Chen & Yanqing Lu & Xinghai Ning & Dechen Jiang & , 2024. "Frequency-encoded eye tracking smart contact lens for human–machine interaction," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    9. Shuo Li & Yong Zhang & Xiaoping Liang & Haomin Wang & Haojie Lu & Mengjia Zhu & Huimin Wang & Mingchao Zhang & Xinping Qiu & Yafeng Song & Yingying Zhang, 2022. "Humidity-sensitive chemoelectric flexible sensors based on metal-air redox reaction for health management," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    10. Shaomei Lin & Weifeng Yang & Xubin Zhu & Yubin Lan & Kerui Li & Qinghong Zhang & Yaogang Li & Chengyi Hou & Hongzhi Wang, 2024. "Triboelectric micro-flexure-sensitive fiber electronics," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    11. Ruoqin Zhang & Xichuan Zhao & Jinzhi Li & Di Zhou & Honglian Guo & Zhi-yuan Li & Feng Li, 2024. "Programmable photoacoustic patterning of microparticles in air," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    12. Jinhong Park & Duhwan Seong & Yong Jun Park & Sang Hyeok Park & Hyunjin Jung & Yewon Kim & Hyoung Won Baac & Mikyung Shin & Seunghyun Lee & Minbaek Lee & Donghee Son, 2022. "Reversible electrical percolation in a stretchable and self-healable silver-gradient nanocomposite bilayer," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    13. Won Bae Han & Gwan-Jin Ko & Kang-Gon Lee & Donghak Kim & Joong Hoon Lee & Seung Min Yang & Dong-Je Kim & Jeong-Woong Shin & Tae-Min Jang & Sungkeun Han & Honglei Zhou & Heeseok Kang & Jun Hyeon Lim & , 2023. "Ultra-stretchable and biodegradable elastomers for soft, transient electronics," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    14. Jiayue Zhang & Yikui Gao & Di Liu & Jing-Shan Zhao & Jie Wang, 2023. "Discharge domains regulation and dynamic processes of direct-current triboelectric nanogenerator," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    15. Chungryeol Lee & Changhyeon Lee & Seungmin Lee & Junhwan Choi & Hocheon Yoo & Sung Gap Im, 2023. "A reconfigurable binary/ternary logic conversion-in-memory based on drain-aligned floating-gate heterojunction transistors," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    16. Haojie Lu & Yong Zhang & Mengjia Zhu & Shuo Li & Huarun Liang & Peng Bi & Shuai Wang & Haomin Wang & Linli Gan & Xun-En Wu & Yingying Zhang, 2024. "Intelligent perceptual textiles based on ionic-conductive and strong silk fibers," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    17. Yijia Lu & Han Tian & Jia Cheng & Fei Zhu & Bin Liu & Shanshan Wei & Linhong Ji & Zhong Lin Wang, 2022. "Decoding lip language using triboelectric sensors with deep learning," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    18. Jian Li & Huiling Jia & Jingkun Zhou & Xingcan Huang & Long Xu & Shengxin Jia & Zhan Gao & Kuanming Yao & Dengfeng Li & Binbin Zhang & Yiming Liu & Ya Huang & Yue Hu & Guangyao Zhao & Zitong Xu & Jiyu, 2023. "Thin, soft, wearable system for continuous wireless monitoring of artery blood pressure," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    19. Hyuk Jun Yoo & Kwan-Young Lee & Donghun Kim & Sang Soo Han, 2024. "OCTOPUS: operation control system for task optimization and job parallelization via a user-optimal scheduler," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    20. Pengwei Wang & Xiaohao Ma & Zhiqiang Lin & Fan Chen & Zijian Chen & Hong Hu & Hailong Xu & Xinyi Zhang & Yuqing Shi & Qiyao Huang & Yuanjing Lin & Zijian Zheng, 2024. "Well-defined in-textile photolithography towards permeable textile electronics," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45059-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.