IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-35691-7.html
   My bibliography  Save this article

Single-cell transcriptomic analysis identifies murine heart molecular features at embryonic and neonatal stages

Author

Listed:
  • Wei Feng

    (University of Pittsburgh School of Medicine)

  • Abha Bais

    (University of Pittsburgh School of Medicine)

  • Haoting He

    (University of Pittsburgh School of Medicine)

  • Cassandra Rios

    (University of Pittsburgh School of Medicine)

  • Shan Jiang

    (University of Pittsburgh School of Medicine)

  • Juan Xu

    (University of Pittsburgh School of Medicine)

  • Cindy Chang

    (University of Pittsburgh School of Medicine)

  • Dennis Kostka

    (University of Pittsburgh School of Medicine
    University of Pittsburgh School of Medicine)

  • Guang Li

    (University of Pittsburgh School of Medicine)

Abstract

Heart development is a continuous process involving significant remodeling during embryogenesis and neonatal stages. To date, several groups have used single-cell sequencing to characterize the heart transcriptomes but failed to capture the progression of heart development at most stages. This has left gaps in understanding the contribution of each cell type across cardiac development. Here, we report the transcriptional profile of the murine heart from early embryogenesis to late neonatal stages. Through further analysis of this dataset, we identify several transcriptional features. We identify gene expression modules enriched at early embryonic and neonatal stages; multiple cell types in the left and right atriums are transcriptionally distinct at neonatal stages; many congenital heart defect-associated genes have cell type-specific expression; stage-unique ligand-receptor interactions are mostly between epicardial cells and other cell types at neonatal stages; and mutants of epicardium-expressed genes Wt1 and Tbx18 have different heart defects. Assessment of this dataset serves as an invaluable source of information for studies of heart development.

Suggested Citation

  • Wei Feng & Abha Bais & Haoting He & Cassandra Rios & Shan Jiang & Juan Xu & Cindy Chang & Dennis Kostka & Guang Li, 2022. "Single-cell transcriptomic analysis identifies murine heart molecular features at embryonic and neonatal stages," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35691-7
    DOI: 10.1038/s41467-022-35691-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-35691-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-35691-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Vincent M. Christoffels & Thomas Grieskamp & Julia Norden & Mathilda T. M. Mommersteeg & Carsten Rudat & Andreas Kispert, 2009. "Tbx18 and the fate of epicardial progenitors," Nature, Nature, vol. 458(7240), pages 8-9, April.
    2. You Li & Nikolai T. Klena & George C. Gabriel & Xiaoqin Liu & Andrew J. Kim & Kristi Lemke & Yu Chen & Bishwanath Chatterjee & William Devine & Rama Rao Damerla & Chienfu Chang & Hisato Yagi & Jovenal, 2015. "Global genetic analysis in mice unveils central role for cilia in congenital heart disease," Nature, Nature, vol. 521(7553), pages 520-524, May.
    3. Junyue Cao & Malte Spielmann & Xiaojie Qiu & Xingfan Huang & Daniel M. Ibrahim & Andrew J. Hill & Fan Zhang & Stefan Mundlos & Lena Christiansen & Frank J. Steemers & Cole Trapnell & Jay Shendure, 2019. "The single-cell transcriptional landscape of mammalian organogenesis," Nature, Nature, vol. 566(7745), pages 496-502, February.
    4. Chen-Leng Cai & Jody C. Martin & Yunfu Sun & Li Cui & Lianchun Wang & Kunfu Ouyang & Lei Yang & Lei Bu & Xingqun Liang & Xiaoxue Zhang & William B. Stallcup & Christopher P. Denton & Andrew McCulloch , 2008. "A myocardial lineage derives from Tbx18 epicardial cells," Nature, Nature, vol. 454(7200), pages 104-108, July.
    5. Guangshuai Jia & Jens Preussner & Xi Chen & Stefan Guenther & Xuejun Yuan & Michail Yekelchyk & Carsten Kuenne & Mario Looso & Yonggang Zhou & Sarah Teichmann & Thomas Braun, 2018. "Single cell RNA-seq and ATAC-seq analysis of cardiac progenitor cell transition states and lineage settlement," Nature Communications, Nature, vol. 9(1), pages 1-17, December.
    6. Sean A. Murphy & Matthew Miyamoto & Anaïs Kervadec & Suraj Kannan & Emmanouil Tampakakis & Sandeep Kambhampati & Brian Leei Lin & Sam Paek & Peter Andersen & Dong-Ik Lee & Renjun Zhu & Steven S. An & , 2021. "PGC1/PPAR drive cardiomyocyte maturation at single cell level via YAP1 and SF3B2," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    7. Suoqin Jin & Christian F. Guerrero-Juarez & Lihua Zhang & Ivan Chang & Raul Ramos & Chen-Hsiang Kuan & Peggy Myung & Maksim V. Plikus & Qing Nie, 2021. "Inference and analysis of cell-cell communication using CellChat," Nature Communications, Nature, vol. 12(1), pages 1-20, December.
    8. Kristy Red-Horse & Hiroo Ueno & Irving L. Weissman & Mark A. Krasnow, 2010. "Coronary arteries form by developmental reprogramming of venous cells," Nature, Nature, vol. 464(7288), pages 549-553, March.
    9. Anjali Rao & Dalia Barkley & Gustavo S. França & Itai Yanai, 2021. "Exploring tissue architecture using spatial transcriptomics," Nature, Nature, vol. 596(7871), pages 211-220, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fangfang Qu & Wenjia Li & Jian Xu & Ruifang Zhang & Jincan Ke & Xiaodie Ren & Xiaogao Meng & Lexin Qin & Jingna Zhang & Fangru Lu & Xin Zhou & Xi Luo & Zhen Zhang & Minhan Wang & Guangming Wu & Duanqi, 2023. "Three-dimensional molecular architecture of mouse organogenesis," Nature Communications, Nature, vol. 14(1), pages 1-18, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elena Astanina & Gabriella Doronzo & Davide Corà & Francesco Neri & Salvatore Oliviero & Tullio Genova & Federico Mussano & Emanuele Middonti & Edoardo Vallariello & Chiara Cencioni & Donatella Valdem, 2022. "The TFEB-TGIF1 axis regulates EMT in mouse epicardial cells," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    2. Qingnan Liang & Yuefan Huang & Shan He & Ken Chen, 2023. "Pathway centric analysis for single-cell RNA-seq and spatial transcriptomics data with GSDensity," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    3. Sandra Curras-Alonso & Juliette Soulier & Thomas Defard & Christian Weber & Sophie Heinrich & Hugo Laporte & Sophie Leboucher & Sonia Lameiras & Marie Dutreix & Vincent Favaudon & Florian Massip & Tho, 2023. "An interactive murine single-cell atlas of the lung responses to radiation injury," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    4. Luc Francis & Daniel McCluskey & Clarisse Ganier & Treasa Jiang & Xinyi Du-Harpur & Jeyrroy Gabriel & Pawan Dhami & Yogesh Kamra & Sudha Visvanathan & Jonathan N. Barker & Catherine H. Smith & Frances, 2024. "Single-cell analysis of psoriasis resolution demonstrates an inflammatory fibroblast state targeted by IL-23 blockade," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    5. Zhenzhen Xun & Xinyu Ding & Yao Zhang & Benyan Zhang & Shujing Lai & Duowu Zou & Junke Zheng & Guoqiang Chen & Bing Su & Leng Han & Youqiong Ye, 2023. "Reconstruction of the tumor spatial microenvironment along the malignant-boundary-nonmalignant axis," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    6. Z. L. Liu & X. Y. Meng & R. J. Bao & M. Y. Shen & J. J. Sun & W. D. Chen & F. Liu & Y. He, 2024. "Single cell deciphering of progression trajectories of the tumor ecosystem in head and neck cancer," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    7. Hugo Croizer & Rana Mhaidly & Yann Kieffer & Geraldine Gentric & Lounes Djerroudi & Renaud Leclere & Floriane Pelon & Catherine Robley & Mylene Bohec & Arnaud Meng & Didier Meseure & Emanuela Romano &, 2024. "Deciphering the spatial landscape and plasticity of immunosuppressive fibroblasts in breast cancer," Nature Communications, Nature, vol. 15(1), pages 1-28, December.
    8. Irfete S. Fetahu & Wolfgang Esser-Skala & Rohit Dnyansagar & Samuel Sindelar & Fikret Rifatbegovic & Andrea Bileck & Lukas Skos & Eva Bozsaky & Daria Lazic & Lisa Shaw & Marcus Tötzl & Dora Tarlungean, 2023. "Single-cell transcriptomics and epigenomics unravel the role of monocytes in neuroblastoma bone marrow metastasis," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    9. Nicola A. Kearns & Artemis Iatrou & Daniel J. Flood & Sashini Tissera & Zachary M. Mullaney & Jishu Xu & Chris Gaiteri & David A. Bennett & Yanling Wang, 2023. "Dissecting the human leptomeninges at single-cell resolution," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    10. Zhuoxuan Li & Tianjie Wang & Pentao Liu & Yuanhua Huang, 2023. "SpatialDM for rapid identification of spatially co-expressed ligand–receptor and revealing cell–cell communication patterns," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    11. Zhuo Ma & Xiaofei Zhang & Wen Zhong & Hongyan Yi & Xiaowei Chen & Yinsuo Zhao & Yanlin Ma & Eli Song & Tao Xu, 2023. "Deciphering early human pancreas development at the single-cell level," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    12. Lichun Ma & Sophia Heinrich & Limin Wang & Friederike L. Keggenhoff & Subreen Khatib & Marshonna Forgues & Michael Kelly & Stephen M. Hewitt & Areeba Saif & Jonathan M. Hernandez & Donna Mabry & Roman, 2022. "Multiregional single-cell dissection of tumor and immune cells reveals stable lock-and-key features in liver cancer," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    13. J. McClatchy & R. Strogantsev & E. Wolfe & H. Y. Lin & M. Mohammadhosseini & B. A. Davis & C. Eden & D. Goldman & W. H. Fleming & P. Conley & G. Wu & L. Cimmino & H. Mohammed & A. Agarwal, 2023. "Clonal hematopoiesis related TET2 loss-of-function impedes IL1β-mediated epigenetic reprogramming in hematopoietic stem and progenitor cells," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    14. Ci Fu & Xiang Zhang & Amanda O. Veri & Kali R. Iyer & Emma Lash & Alice Xue & Huijuan Yan & Nicole M. Revie & Cassandra Wong & Zhen-Yuan Lin & Elizabeth J. Polvi & Sean D. Liston & Benjamin VanderSlui, 2021. "Leveraging machine learning essentiality predictions and chemogenomic interactions to identify antifungal targets," Nature Communications, Nature, vol. 12(1), pages 1-18, December.
    15. Yuchen Liang & Guowei Shi & Runlin Cai & Yuchen Yuan & Ziying Xie & Long Yu & Yingjian Huang & Qian Shi & Lizhe Wang & Jun Li & Zhonghui Tang, 2024. "PROST: quantitative identification of spatially variable genes and domain detection in spatial transcriptomics," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    16. Faith H. Brennan & Yang Li & Cankun Wang & Anjun Ma & Qi Guo & Yi Li & Nicole Pukos & Warren A. Campbell & Kristina G. Witcher & Zhen Guan & Kristina A. Kigerl & Jodie C. E. Hall & Jonathan P. Godbout, 2022. "Microglia coordinate cellular interactions during spinal cord repair in mice," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    17. Seung-Hyun Jung & Byung-Hee Hwang & Sun Shin & Eun-Hye Park & Sin-Hee Park & Chan Woo Kim & Eunmin Kim & Eunho Choo & Ik Jun Choi & Filip K. Swirski & Kiyuk Chang & Yeun-Jun Chung, 2022. "Spatiotemporal dynamics of macrophage heterogeneity and a potential function of Trem2hi macrophages in infarcted hearts," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    18. Hailun Zhu & Sihai Dave Zhao & Alokananda Ray & Yu Zhang & Xin Li, 2022. "A comprehensive temporal patterning gene network in Drosophila medulla neuroblasts revealed by single-cell RNA sequencing," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    19. Emmanuel Ekow Asmah & Francis Kwaw Andoh & Edem Titriku, 2020. "Trade misinvoicing effects on tax revenue in sub‐Saharan Africa: The role of tax holidays and regulatory quality," Annals of Public and Cooperative Economics, Wiley Blackwell, vol. 91(4), pages 649-672, December.
    20. Moujtaba Y. Kasmani & Paytsar Topchyan & Ashley K. Brown & Ryan J. Brown & Xiaopeng Wu & Yao Chen & Achia Khatun & Donia Alson & Yue Wu & Robert Burns & Chien-Wei Lin & Matthew R. Kudek & Jie Sun & We, 2023. "A spatial sequencing atlas of age-induced changes in the lung during influenza infection," Nature Communications, Nature, vol. 14(1), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35691-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.