IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-50308-x.html
   My bibliography  Save this article

SANTO: a coarse-to-fine alignment and stitching method for spatial omics

Author

Listed:
  • Haoyang Li

    (King Abdullah University of Science and Technology (KAUST)
    King Abdullah University of Science and Technology (KAUST))

  • Yingxin Lin

    (Yale University)

  • Wenjia He

    (King Abdullah University of Science and Technology (KAUST)
    King Abdullah University of Science and Technology (KAUST))

  • Wenkai Han

    (King Abdullah University of Science and Technology (KAUST)
    King Abdullah University of Science and Technology (KAUST))

  • Xiaopeng Xu

    (King Abdullah University of Science and Technology (KAUST)
    King Abdullah University of Science and Technology (KAUST))

  • Chencheng Xu

    (King Abdullah University of Science and Technology (KAUST)
    King Abdullah University of Science and Technology (KAUST))

  • Elva Gao

    (King Abdullah University of Science and Technology (KAUST))

  • Hongyu Zhao

    (Yale University)

  • Xin Gao

    (King Abdullah University of Science and Technology (KAUST)
    King Abdullah University of Science and Technology (KAUST))

Abstract

With the flourishing of spatial omics technologies, alignment and stitching of slices becomes indispensable to decipher a holistic view of 3D molecular profile. However, existing alignment and stitching methods are unpractical to process large-scale and image-based spatial omics dataset due to extreme time consumption and unsatisfactory accuracy. Here we propose SANTO, a coarse-to-fine method targeting alignment and stitching tasks for spatial omics. SANTO firstly rapidly supplies reasonable spatial positions of two slices and identifies the overlap region. Then, SANTO refines the positions of two slices by considering spatial and omics patterns. Comprehensive experiments demonstrate the superior performance of SANTO over existing methods. Specifically, SANTO stitches cross-platform slices for breast cancer samples, enabling integration of complementary features to synergistically explore tumor microenvironment. SANTO is then applied to 3D-to-3D spatiotemporal alignment to study development of mouse embryo. Furthermore, SANTO enables cross-modality alignment of spatial transcriptomic and epigenomic data to understand complementary interactions.

Suggested Citation

  • Haoyang Li & Yingxin Lin & Wenjia He & Wenkai Han & Xiaopeng Xu & Chencheng Xu & Elva Gao & Hongyu Zhao & Xin Gao, 2024. "SANTO: a coarse-to-fine alignment and stitching method for spatial omics," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50308-x
    DOI: 10.1038/s41467-024-50308-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-50308-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-50308-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Haoyang Li & Juexiao Zhou & Zhongxiao Li & Siyuan Chen & Xingyu Liao & Bin Zhang & Ruochi Zhang & Yu Wang & Shiwei Sun & Xin Gao, 2023. "A comprehensive benchmarking with practical guidelines for cellular deconvolution of spatial transcriptomics," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Kalen Clifton & Manjari Anant & Gohta Aihara & Lyla Atta & Osagie K. Aimiuwu & Justus M. Kebschull & Michael I. Miller & Daniel Tward & Jean Fan, 2023. "STalign: Alignment of spatial transcriptomics data using diffeomorphic metric mapping," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    3. Chen-Rui Xia & Zhi-Jie Cao & Xin-Ming Tu & Ge Gao, 2023. "Spatial-linked alignment tool (SLAT) for aligning heterogenous slices," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. Hao Xu & Shuyan Wang & Minghao Fang & Songwen Luo & Chunpeng Chen & Siyuan Wan & Rirui Wang & Meifang Tang & Tian Xue & Bin Li & Jun Lin & Kun Qu, 2023. "SPACEL: deep learning-based characterization of spatial transcriptome architectures," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    5. Anjali Rao & Dalia Barkley & Gustavo S. França & Itai Yanai, 2021. "Exploring tissue architecture using spatial transcriptomics," Nature, Nature, vol. 596(7871), pages 211-220, August.
    6. Benjamin L. Walker & Qing Nie, 2023. "NeST: nested hierarchical structure identification in spatial transcriptomic data," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    7. Amanda Janesick & Robert Shelansky & Andrew D. Gottscho & Florian Wagner & Stephen R. Williams & Morgane Rouault & Ghezal Beliakoff & Carolyn A. Morrison & Michelli F. Oliveira & Jordan T. Sicherman &, 2023. "High resolution mapping of the tumor microenvironment using integrated single-cell, spatial and in situ analysis," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    8. Suoqin Jin & Christian F. Guerrero-Juarez & Lihua Zhang & Ivan Chang & Raul Ramos & Chen-Hsiang Kuan & Peggy Myung & Maksim V. Plikus & Qing Nie, 2021. "Inference and analysis of cell-cell communication using CellChat," Nature Communications, Nature, vol. 12(1), pages 1-20, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jingyang Qian & Hudong Bao & Xin Shao & Yin Fang & Jie Liao & Zhuo Chen & Chengyu Li & Wenbo Guo & Yining Hu & Anyao Li & Yue Yao & Xiaohui Fan & Yiyu Cheng, 2024. "Simulating multiple variability in spatially resolved transcriptomics with scCube," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    2. Qingnan Liang & Yuefan Huang & Shan He & Ken Chen, 2023. "Pathway centric analysis for single-cell RNA-seq and spatial transcriptomics data with GSDensity," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    3. Kaitlin M. Stouffer & Alain Trouvé & Laurent Younes & Michael Kunst & Lydia Ng & Hongkui Zeng & Manjari Anant & Jean Fan & Yongsoo Kim & Xiaoyin Chen & Mara Rue & Michael I. Miller, 2024. "Cross-modality mapping using image varifolds to align tissue-scale atlases to molecular-scale measures with application to 2D brain sections," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    4. Arezou Rahimi & Luis A. Vale-Silva & Maria Fälth Savitski & Jovan Tanevski & Julio Saez-Rodriguez, 2024. "DOT: a flexible multi-objective optimization framework for transferring features across single-cell and spatial omics," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    5. Zhuoxuan Li & Tianjie Wang & Pentao Liu & Yuanhua Huang, 2023. "SpatialDM for rapid identification of spatially co-expressed ligand–receptor and revealing cell–cell communication patterns," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    6. Wei Feng & Abha Bais & Haoting He & Cassandra Rios & Shan Jiang & Juan Xu & Cindy Chang & Dennis Kostka & Guang Li, 2022. "Single-cell transcriptomic analysis identifies murine heart molecular features at embryonic and neonatal stages," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    7. Zhenzhen Xun & Xinyu Ding & Yao Zhang & Benyan Zhang & Shujing Lai & Duowu Zou & Junke Zheng & Guoqiang Chen & Bing Su & Leng Han & Youqiong Ye, 2023. "Reconstruction of the tumor spatial microenvironment along the malignant-boundary-nonmalignant axis," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    8. Zhiyuan Yuan, 2024. "MENDER: fast and scalable tissue structure identification in spatial omics data," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    9. Chunman Zuo & Junjie Xia & Luonan Chen, 2024. "Dissecting tumor microenvironment from spatially resolved transcriptomics data by heterogeneous graph learning," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    10. Yanchuan Li & Huamei Li & Cheng Peng & Ge Meng & Yijun Lu & Honglin Liu & Li Cui & Huan Zhou & Zhu Xu & Lingyun Sun & Lihong Liu & Qing Xiong & Beicheng Sun & Shiping Jiao, 2024. "Unraveling the spatial organization and development of human thymocytes through integration of spatial transcriptomics and single-cell multi-omics profiling," Nature Communications, Nature, vol. 15(1), pages 1-25, December.
    11. Xinrui Zhou & Wan Yi Seow & Norbert Ha & Teh How Cheng & Lingfan Jiang & Jeeranan Boonruangkan & Jolene Jie Lin Goh & Shyam Prabhakar & Nigel Chou & Kok Hao Chen, 2024. "Highly sensitive spatial transcriptomics using FISHnCHIPs of multiple co-expressed genes," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    12. Tim Flerlage & Jeremy Chase Crawford & E. Kaitlynn Allen & Danielle Severns & Shaoyuan Tan & Sherri Surman & Granger Ridout & Tanya Novak & Adrienne Randolph & Alina N. West & Paul G. Thomas, 2023. "Single cell transcriptomics identifies distinct profiles in pediatric acute respiratory distress syndrome," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    13. Shirong Cao & Yu Pan & Andrew S. Terker & Juan Pablo Arroyo Ornelas & Yinqiu Wang & Jiaqi Tang & Aolei Niu & Sarah Abu Kar & Mengdi Jiang & Wentian Luo & Xinyu Dong & Xiaofeng Fan & Suwan Wang & Matth, 2023. "Epidermal growth factor receptor activation is essential for kidney fibrosis development," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    14. Christopher Bono & Yang Liu & Alexander Ferrena & Aneesa Valentine & Deyou Zheng & Bernice E. Morrow, 2023. "Single-cell transcriptomics uncovers a non-autonomous Tbx1-dependent genetic program controlling cardiac neural crest cell development," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    15. Lichun Ma & Sophia Heinrich & Limin Wang & Friederike L. Keggenhoff & Subreen Khatib & Marshonna Forgues & Michael Kelly & Stephen M. Hewitt & Areeba Saif & Jonathan M. Hernandez & Donna Mabry & Roman, 2022. "Multiregional single-cell dissection of tumor and immune cells reveals stable lock-and-key features in liver cancer," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    16. Yuchen Liang & Guowei Shi & Runlin Cai & Yuchen Yuan & Ziying Xie & Long Yu & Yingjian Huang & Qian Shi & Lizhe Wang & Jun Li & Zhonghui Tang, 2024. "PROST: quantitative identification of spatially variable genes and domain detection in spatial transcriptomics," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    17. Faith H. Brennan & Yang Li & Cankun Wang & Anjun Ma & Qi Guo & Yi Li & Nicole Pukos & Warren A. Campbell & Kristina G. Witcher & Zhen Guan & Kristina A. Kigerl & Jodie C. E. Hall & Jonathan P. Godbout, 2022. "Microglia coordinate cellular interactions during spinal cord repair in mice," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    18. Sandra Curras-Alonso & Juliette Soulier & Thomas Defard & Christian Weber & Sophie Heinrich & Hugo Laporte & Sophie Leboucher & Sonia Lameiras & Marie Dutreix & Vincent Favaudon & Florian Massip & Tho, 2023. "An interactive murine single-cell atlas of the lung responses to radiation injury," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    19. Ilmatar Rooda & Jasmin Hassan & Jie Hao & Magdalena Wagner & Elisabeth Moussaud-Lamodière & Kersti Jääger & Marjut Otala & Katri Knuus & Cecilia Lindskog & Kiriaki Papaikonomou & Sebastian Gidlöf & Ce, 2024. "In-depth analysis of transcriptomes in ovarian cortical follicles from children and adults reveals interfollicular heterogeneity," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    20. Moujtaba Y. Kasmani & Paytsar Topchyan & Ashley K. Brown & Ryan J. Brown & Xiaopeng Wu & Yao Chen & Achia Khatun & Donia Alson & Yue Wu & Robert Burns & Chien-Wei Lin & Matthew R. Kudek & Jie Sun & We, 2023. "A spatial sequencing atlas of age-induced changes in the lung during influenza infection," Nature Communications, Nature, vol. 14(1), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50308-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.