IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-34929-8.html
   My bibliography  Save this article

Global landscape of replicative DNA polymerase usage in the human genome

Author

Listed:
  • Eri Koyanagi

    (Tohoku University)

  • Yoko Kakimoto

    (Tohoku University)

  • Tamiko Minamisawa

    (Japanese Foundation for Cancer Research)

  • Fumiya Yoshifuji

    (Tohoku University)

  • Toyoaki Natsume

    (Research Organization of Information and Systems (ROIS)
    The Graduate University for Advanced Studies (SOKENDAI)
    Research Center for Genome & Medical Sciences, Tokyo Metropolitan Institute of Medical Science)

  • Atsushi Higashitani

    (Tohoku University)

  • Tomoo Ogi

    (Nagoya University)

  • Antony M. Carr

    (University of Sussex)

  • Masato T. Kanemaki

    (Research Organization of Information and Systems (ROIS)
    The Graduate University for Advanced Studies (SOKENDAI)
    The University of Tokyo)

  • Yasukazu Daigaku

    (Tohoku University
    Japanese Foundation for Cancer Research)

Abstract

The division of labour among DNA polymerase underlies the accuracy and efficiency of replication. However, the roles of replicative polymerases have not been directly established in human cells. We developed polymerase usage sequencing (Pu-seq) in HCT116 cells and mapped Polε and Polα usage genome wide. The polymerase usage profiles show Polε synthesises the leading strand and Polα contributes mainly to lagging strand synthesis. Combining the Polε and Polα profiles, we accurately predict the genome-wide pattern of fork directionality plus zones of replication initiation and termination. We confirm that transcriptional activity contributes to the pattern of initiation and termination and, by separately analysing the effect of transcription on co-directional and converging forks, demonstrate that coupled DNA synthesis of leading and lagging strands is compromised by transcription in both co-directional and convergent forks. Polymerase uncoupling is particularly evident in the vicinity of large genes, including the two most unstable common fragile sites, FRA3B and FRA3D, thus linking transcription-induced polymerase uncoupling to chromosomal instability. Together, our result demonstrated that Pu-seq in human cells provides a powerful and straightforward methodology to explore DNA polymerase usage and replication fork dynamics.

Suggested Citation

  • Eri Koyanagi & Yoko Kakimoto & Tamiko Minamisawa & Fumiya Yoshifuji & Toyoaki Natsume & Atsushi Higashitani & Tomoo Ogi & Antony M. Carr & Masato T. Kanemaki & Yasukazu Daigaku, 2022. "Global landscape of replicative DNA polymerase usage in the human genome," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34929-8
    DOI: 10.1038/s41467-022-34929-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-34929-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-34929-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Karel Naiman & Eduard Campillo-Funollet & Adam T. Watson & Alice Budden & Izumi Miyabe & Antony M. Carr, 2021. "Replication dynamics of recombination-dependent replication forks," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    2. Anne Fernandez-Vidal & Laure Guitton-Sert & Jean-Charles Cadoret & Marjorie Drac & Etienne Schwob & Giuseppe Baldacci & Christophe Cazaux & Jean-Sébastien Hoffmann, 2014. "A role for DNA polymerase θ in the timing of DNA replication," Nature Communications, Nature, vol. 5(1), pages 1-10, September.
    3. Daniel J. Emerson & Peiyao A. Zhao & Ashley L. Cook & R. Jordan Barnett & Kyle N. Klein & Dalila Saulebekova & Chunmin Ge & Linda Zhou & Zoltan Simandi & Miriam K. Minsk & Katelyn R. Titus & Weitao Wa, 2022. "Cohesin-mediated loop anchors confine the locations of human replication origins," Nature, Nature, vol. 606(7915), pages 812-819, June.
    4. Haizhen Long & Liwei Zhang & Mengjie Lv & Zengqi Wen & Wenhao Zhang & Xiulan Chen & Peitao Zhang & Tongqing Li & Luyuan Chang & Caiwei Jin & Guozhao Wu & Xi Wang & Fuquan Yang & Jianfeng Pei & Ping Ch, 2020. "H2A.Z facilitates licensing and activation of early replication origins," Nature, Nature, vol. 577(7791), pages 576-581, January.
    5. Xiaowen Zhang & Huai-Chin Chiang & Yao Wang & Chi Zhang & Sabrina Smith & Xiayan Zhao & Sreejith J. Nair & Joel Michalek & Ismail Jatoi & Meeghan Lautner & Boyce Oliver & Howard Wang & Anna Petit & Te, 2017. "Attenuation of RNA polymerase II pausing mitigates BRCA1-associated R-loop accumulation and tumorigenesis," Nature Communications, Nature, vol. 8(1), pages 1-12, August.
    6. Nataliya Petryk & Malik Kahli & Yves d'Aubenton-Carafa & Yan Jaszczyszyn & Yimin Shen & Maud Silvain & Claude Thermes & Chun-Long Chen & Olivier Hyrien, 2016. "Replication landscape of the human genome," Nature Communications, Nature, vol. 7(1), pages 1-13, April.
    7. V. O. Chagin & C. S. Casas-Delucchi & M. Reinhart & L. Schermelleh & Y. Markaki & A. Maiser & J. J. Bolius & A. Bensimon & M. Fillies & P. Domaing & Y. M. Rozanov & H. Leonhardt & M. C. Cardoso, 2016. "4D Visualization of replication foci in mammalian cells corresponding to individual replicons," Nature Communications, Nature, vol. 7(1), pages 1-12, September.
    8. Aisha Yesbolatova & Yuichiro Saito & Naomi Kitamoto & Hatsune Makino-Itou & Rieko Ajima & Risako Nakano & Hirofumi Nakaoka & Kosuke Fukui & Kanae Gamo & Yusuke Tominari & Haruki Takeuchi & Yumiko Saga, 2020. "The auxin-inducible degron 2 technology provides sharp degradation control in yeast, mammalian cells, and mice," Nature Communications, Nature, vol. 11(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wenting Zhang & Yue Wang & Yongjie Liu & Cuifang Liu & Yizhou Wang & Lin He & Xiao Cheng & Yani Peng & Lu Xia & Xiaodi Wu & Jiajing Wu & Yu Zhang & Luyang Sun & Ping Chen & Guohong Li & Qiang Tu & Jin, 2023. "NFIB facilitates replication licensing by acting as a genome organizer," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    2. Aina Maria Mas & Enrique Goñi & Igor Ruiz de los Mozos & Aida Arcas & Luisa Statello & Jovanna González & Lorea Blázquez & Wei Ting Chelsea Lee & Dipika Gupta & Álvaro Sejas & Shoko Hoshina & Alexandr, 2023. "ORC1 binds to cis-transcribed RNAs for efficient activation of replication origins," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    3. Wenyan Wan & Hui Dong & De-Hua Lai & Jiong Yang & Kai He & Xiaoyan Tang & Qun Liu & Geoff Hide & Xing-Quan Zhu & L. David Sibley & Zhao-Rong Lun & Shaojun Long, 2023. "The Toxoplasma micropore mediates endocytosis for selective nutrient salvage from host cell compartments," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    4. Congcong Tian & Jiaqi Zhou & Xinran Li & Yuan Gao & Qing Wen & Xing Kang & Nan Wang & Yuan Yao & Jiuhang Jiang & Guibing Song & Tianjun Zhang & Suili Hu & JingYi Liao & Chuanhe Yu & Zhiquan Wang & Xia, 2023. "Impaired histone inheritance promotes tumor progression," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    5. Wei Wu & Szymon A. Barwacz & Rahul Bhowmick & Katrine Lundgaard & Marisa M. Gonçalves Dinis & Malgorzata Clausen & Masato T. Kanemaki & Ying Liu, 2023. "Mitotic DNA synthesis in response to replication stress requires the sequential action of DNA polymerases zeta and delta in human cells," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    6. María Arroyo & Florian D. Hastert & Andreas Zhadan & Florian Schelter & Susanne Zimbelmann & Cathia Rausch & Anne K. Ludwig & Thomas Carell & M. Cristina Cardoso, 2022. "Isoform-specific and ubiquitination dependent recruitment of Tet1 to replicating heterochromatin modulates methylcytosine oxidation," Nature Communications, Nature, vol. 13(1), pages 1-28, December.
    7. Anastasiya Kishkevich & Sanjeeta Tamang & Michael O. Nguyen & Judith Oehler & Elena Bulmaga & Christos Andreadis & Carl A. Morrow & Manisha Jalan & Fekret Osman & Matthew C. Whitby, 2022. "Rad52’s DNA annealing activity drives template switching associated with restarted DNA replication," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    8. Judith Oehler & Carl A. Morrow & Matthew C. Whitby, 2023. "Gene duplication and deletion caused by over-replication at a fork barrier," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    9. Bogang Wu & Xiaowen Zhang & Huai-Chin Chiang & Haihui Pan & Bin Yuan & Payal Mitra & Leilei Qi & Hayk Simonyan & Colin N. Young & Eric Yvon & Yanfen Hu & Nu Zhang & Rong Li, 2022. "RNA polymerase II pausing factor NELF in CD8+ T cells promotes antitumor immunity," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    10. Ai Kiyomitsu & Toshiya Nishimura & Shiang Jyi Hwang & Satoshi Ansai & Masato T. Kanemaki & Minoru Tanaka & Tomomi Kiyomitsu, 2024. "Ran-GTP assembles a specialized spindle structure for accurate chromosome segregation in medaka early embryos," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    11. Stefan A. Hoffmann & Yizhi Cai, 2024. "Engineering stringent genetic biocontainment of yeast with a protein stability switch," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    12. François Serra & Andrea Nieto-Aliseda & Lucía Fanlo-Escudero & Llorenç Rovirosa & Mónica Cabrera-Pasadas & Aleksey Lazarenkov & Blanca Urmeneta & Alvaro Alcalde-Merino & Emanuele M. Nola & Andrei L. O, 2024. "p53 rapidly restructures 3D chromatin organization to trigger a transcriptional response," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    13. Dashiell J. Massey & Amnon Koren, 2022. "High-throughput analysis of single human cells reveals the complex nature of DNA replication timing control," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    14. Zhiqian Li & Lang You & Anita Hermann & Ethan Bier, 2024. "Developmental progression of DNA double-strand break repair deciphered by a single-allele resolution mutation classifier," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    15. Qiliang Ding & Matthew M. Edwards & Ning Wang & Xiang Zhu & Alexa N. Bracci & Michelle L. Hulke & Ya Hu & Yao Tong & Joyce Hsiao & Christine J. Charvet & Sulagna Ghosh & Robert E. Handsaker & Kevin Eg, 2021. "The genetic architecture of DNA replication timing in human pluripotent stem cells," Nature Communications, Nature, vol. 12(1), pages 1-18, December.
    16. Daniel P. Bondeson & Zachary Mullin-Bernstein & Sydney Oliver & Thomas A. Skipper & Thomas C. Atack & Nolan Bick & Meilani Ching & Andrew A. Guirguis & Jason Kwon & Carly Langan & Dylan Millson & Bren, 2022. "Systematic profiling of conditional degron tag technologies for target validation studies," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    17. Riccardo Calandrelli & Xingzhao Wen & John Lalith Charles Richard & Zhifei Luo & Tri C. Nguyen & Chien-Ju Chen & Zhijie Qi & Shuanghong Xue & Weizhong Chen & Zhangming Yan & Weixin Wu & Kathia Zaleta-, 2023. "Genome-wide analysis of the interplay between chromatin-associated RNA and 3D genome organization in human cells," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    18. Sai Li & Michael R. Wasserman & Olga Yurieva & Lu Bai & Michael E. O’Donnell & Shixin Liu, 2022. "Nucleosome-directed replication origin licensing independent of a consensus DNA sequence," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    19. Kate E. Coleman & Yandong Yin & Sarah Kit Leng Lui & Sarah Keegan & David Fenyo & Duncan J. Smith & Eli Rothenberg & Tony T. Huang, 2022. "USP1-trapping lesions as a source of DNA replication stress and genomic instability," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    20. Lorenzo Corazzi & Vivien S. Ionasz & Sergej Andrejev & Li-Chin Wang & Athanasios Vouzas & Marco Giaisi & Giulia Di Muzio & Boyu Ding & Anna J. M. Marx & Jonas Henkenjohann & Michael M. Allers & David , 2024. "Linear interaction between replication and transcription shapes DNA break dynamics at recurrent DNA break Clusters," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34929-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.