IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-47934-w.html
   My bibliography  Save this article

Linear interaction between replication and transcription shapes DNA break dynamics at recurrent DNA break Clusters

Author

Listed:
  • Lorenzo Corazzi

    (German Cancer Research Center
    Ruprecht-Karl-University of Heidelberg)

  • Vivien S. Ionasz

    (German Cancer Research Center
    Ruprecht-Karl-University of Heidelberg)

  • Sergej Andrejev

    (German Cancer Research Center)

  • Li-Chin Wang

    (German Cancer Research Center)

  • Athanasios Vouzas

    (Florida State University
    San Diego Biomedical Research Institute)

  • Marco Giaisi

    (German Cancer Research Center)

  • Giulia Di Muzio

    (German Cancer Research Center
    Ruprecht-Karl-University of Heidelberg
    Ruprecht-Karl-University of Heidelberg)

  • Boyu Ding

    (German Cancer Research Center
    Ruprecht-Karl-University of Heidelberg
    Ruprecht-Karl-University of Heidelberg)

  • Anna J. M. Marx

    (German Cancer Research Center
    Ruprecht-Karl-University of Heidelberg
    Ruprecht-Karl-University of Heidelberg)

  • Jonas Henkenjohann

    (German Cancer Research Center
    Ruprecht-Karl-University of Heidelberg
    Ruprecht-Karl-University of Heidelberg)

  • Michael M. Allers

    (German Cancer Research Center
    Ruprecht-Karl-University of Heidelberg)

  • David M. Gilbert

    (San Diego Biomedical Research Institute)

  • Pei-Chi Wei

    (German Cancer Research Center
    Ruprecht-Karl-University of Heidelberg
    Ruprecht-Karl-University of Heidelberg)

Abstract

Recurrent DNA break clusters (RDCs) are replication-transcription collision hotspots; many are unique to neural progenitor cells. Through high-resolution replication sequencing and a capture-ligation assay in mouse neural progenitor cells experiencing replication stress, we unravel the replication features dictating RDC location and orientation. Most RDCs occur at the replication forks traversing timing transition regions (TTRs), where sparse replication origins connect unidirectional forks. Leftward-moving forks generate telomere-connected DNA double-strand breaks (DSBs), while rightward-moving forks lead to centromere-connected DSBs. Strand-specific mapping for DNA-bound RNA reveals co-transcriptional dual-strand DNA:RNA hybrids present at a higher density in RDC than in other actively transcribed long genes. In addition, mapping RNA polymerase activity uncovers that head-to-head interactions between replication and transcription machinery result in 60% DSB contribution to the head-on compared to 40% for co-directional. Taken together we reveal TTR as a fragile class and show how the linear interaction between transcription and replication impacts genome stability.

Suggested Citation

  • Lorenzo Corazzi & Vivien S. Ionasz & Sergej Andrejev & Li-Chin Wang & Athanasios Vouzas & Marco Giaisi & Giulia Di Muzio & Boyu Ding & Anna J. M. Marx & Jonas Henkenjohann & Michael M. Allers & David , 2024. "Linear interaction between replication and transcription shapes DNA break dynamics at recurrent DNA break Clusters," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47934-w
    DOI: 10.1038/s41467-024-47934-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-47934-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-47934-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dan Sarni & Takayo Sasaki & Michal Irony Tur-Sinai & Karin Miron & Juan Carlos Rivera-Mulia & Brian Magnuson & Mats Ljungman & David M. Gilbert & Batsheva Kerem, 2020. "3D genome organization contributes to genome instability at fragile sites," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    2. Zhaoqing Ba & Jiangman Lou & Adam Yongxin Ye & Hai-Qiang Dai & Edward W. Dring & Sherry G. Lin & Suvi Jain & Nia Kyritsis & Kyong-Rim Kieffer-Kwon & Rafael Casellas & Frederick W. Alt, 2020. "CTCF orchestrates long-range cohesin-driven V(D)J recombinational scanning," Nature, Nature, vol. 586(7828), pages 305-310, October.
    3. Benjamin D. Pope & Tyrone Ryba & Vishnu Dileep & Feng Yue & Weisheng Wu & Olgert Denas & Daniel L. Vera & Yanli Wang & R. Scott Hansen & Theresa K. Canfield & Robert E. Thurman & Yong Cheng & Günhan G, 2014. "Topologically associating domains are stable units of replication-timing regulation," Nature, Nature, vol. 515(7527), pages 402-405, November.
    4. Nataliya Petryk & Malik Kahli & Yves d'Aubenton-Carafa & Yan Jaszczyszyn & Yimin Shen & Maud Silvain & Claude Thermes & Chun-Long Chen & Olivier Hyrien, 2016. "Replication landscape of the human genome," Nature Communications, Nature, vol. 7(1), pages 1-13, April.
    5. Xuefei Zhang & Yu Zhang & Zhaoqing Ba & Nia Kyritsis & Rafael Casellas & Frederick W. Alt, 2019. "Fundamental roles of chromatin loop extrusion in antibody class switching," Nature, Nature, vol. 575(7782), pages 385-389, November.
    6. Yingjie Zhu & Anna Biernacka & Benjamin Pardo & Norbert Dojer & Romain Forey & Magdalena Skrzypczak & Bernard Fongang & Jules Nde & Razie Yousefi & Philippe Pasero & Krzysztof Ginalski & Maga Rowicka, 2019. "qDSB-Seq is a general method for genome-wide quantification of DNA double-strand breaks using sequencing," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    7. Nicholas A. Willis & Richard L. Frock & Francesca Menghi & Erin E. Duffey & Arvind Panday & Virginia Camacho & E. Paul Hasty & Edison T. Liu & Frederick W. Alt & Ralph Scully, 2017. "Mechanism of tandem duplication formation in BRCA1-mutant cells," Nature, Nature, vol. 551(7682), pages 590-595, November.
    8. Olivier Brison & Sami El-Hilali & Dana Azar & Stéphane Koundrioukoff & Mélanie Schmidt & Viola Nähse & Yan Jaszczyszyn & Anne-Marie Lachages & Bernard Dutrillaux & Claude Thermes & Michelle Debatisse , 2019. "Transcription-mediated organization of the replication initiation program across large genes sets common fragile sites genome-wide," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
    9. Morgane Macheret & Thanos D. Halazonetis, 2018. "Intragenic origins due to short G1 phases underlie oncogene-induced DNA replication stress," Nature, Nature, vol. 555(7694), pages 112-116, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khalid H. Bhat & Saurabh Priyadarshi & Sarah Naiyer & Xinyan Qu & Hammad Farooq & Eden Kleiman & Jeffery Xu & Xue Lei & Jose F. Cantillo & Robert Wuerffel & Nicole Baumgarth & Jie Liang & Ann J. Feene, 2023. "An Igh distal enhancer modulates antigen receptor diversity by determining locus conformation," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    2. Daniel Malzl & Mihaela Peycheva & Ali Rahjouei & Stefano Gnan & Kyle N. Klein & Mariia Nazarova & Ursula E. Schoeberl & David M. Gilbert & Sara C. B. Buonomo & Michela Virgilio & Tobias Neumann & Rush, 2023. "RIF1 regulates early replication timing in murine B cells," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    3. Silvia Peripolli & Leticia Meneguello & Chiara Perrod & Tanya Singh & Harshil Patel & Sazia T. Rahman & Koshiro Kiso & Peter Thorpe & Vincenzo Calvanese & Cosetta Bertoli & Robertus A. M. de Bruin, 2024. "Oncogenic c-Myc induces replication stress by increasing cohesins chromatin occupancy in a CTCF-dependent manner," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Elias Einig & Chao Jin & Valentina Andrioletti & Boris Macek & Nikita Popov, 2023. "RNAPII-dependent ATM signaling at collisions with replication forks," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    5. Alon Diament & Tamir Tuller, 2015. "Improving 3D Genome Reconstructions Using Orthologous and Functional Constraints," PLOS Computational Biology, Public Library of Science, vol. 11(5), pages 1-22, May.
    6. Samuel Hume & Claudia P. Grou & Pauline Lascaux & Vincenzo D’Angiolella & Arnaud J. Legrand & Kristijan Ramadan & Grigory L. Dianov, 2021. "The NUCKS1-SKP2-p21/p27 axis controls S phase entry," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    7. Taichi Igarashi & Marianne Mazevet & Takaaki Yasuhara & Kimiyoshi Yano & Akifumi Mochizuki & Makoto Nishino & Tatsuya Yoshida & Yukihiro Yoshida & Nobuhiko Takamatsu & Akihide Yoshimi & Kouya Shiraish, 2023. "An ATR-PrimPol pathway confers tolerance to oncogenic KRAS-induced and heterochromatin-associated replication stress," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    8. Shaun Scaramuzza & Rebecca M. Jones & Martina Muste Sadurni & Alicja Reynolds-Winczura & Divyasree Poovathumkadavil & Abigail Farrell & Toyoaki Natsume & Patricia Rojas & Cyntia Fernandez Cuesta & Mas, 2023. "TRAIP resolves DNA replication-transcription conflicts during the S-phase of unperturbed cells," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    9. Yi-Li Feng & Qian Liu & Ruo-Dan Chen & Si-Cheng Liu & Zhi-Cheng Huang & Kun-Ming Liu & Xiao-Ying Yang & An-Yong Xie, 2022. "DNA nicks induce mutational signatures associated with BRCA1 deficiency," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    10. Cuifang Liu & Juan Yu & Aoqun Song & Min Wang & Jiansen Hu & Ping Chen & Jicheng Zhao & Guohong Li, 2023. "Histone H1 facilitates restoration of H3K27me3 during DNA replication by chromatin compaction," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    11. Razie Yousefi & Maga Rowicka, 2019. "Stochasticity of replication forks’ speeds plays a key role in the dynamics of DNA replication," PLOS Computational Biology, Public Library of Science, vol. 15(12), pages 1-19, December.
    12. Estelle Vincendeau & Wenming Wei & Xuefei Zhang & Cyril Planchais & Wei Yu & Hélène Lenden-Hasse & Thomas Cokelaer & Juliana Pipoli da Fonseca & Hugo Mouquet & David J. Adams & Frederick W. Alt & Step, 2022. "SHLD1 is dispensable for 53BP1-dependent V(D)J recombination but critical for productive class switch recombination," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    13. Dashiell J. Massey & Amnon Koren, 2022. "High-throughput analysis of single human cells reveals the complex nature of DNA replication timing control," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    14. Nimrod Rappoport & Elad Chomsky & Takashi Nagano & Charlie Seibert & Yaniv Lubling & Yael Baran & Aviezer Lifshitz & Wing Leung & Zohar Mukamel & Ron Shamir & Peter Fraser & Amos Tanay, 2023. "Single cell Hi-C identifies plastic chromosome conformations underlying the gastrulation enhancer landscape," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    15. Jin H. Yang & Hugo B. Brandão & Anders S. Hansen, 2023. "DNA double-strand break end synapsis by DNA loop extrusion," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    16. Kate E. Coleman & Yandong Yin & Sarah Kit Leng Lui & Sarah Keegan & David Fenyo & Duncan J. Smith & Eli Rothenberg & Tony T. Huang, 2022. "USP1-trapping lesions as a source of DNA replication stress and genomic instability," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    17. Sora Yoon & Aditi Chandra & Golnaz Vahedi, 2022. "Stripenn detects architectural stripes from chromatin conformation data using computer vision," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    18. Ofir Shukron & David Holcman, 2017. "Transient chromatin properties revealed by polymer models and stochastic simulations constructed from Chromosomal Capture data," PLOS Computational Biology, Public Library of Science, vol. 13(4), pages 1-20, April.
    19. Karl-Uwe Reusswig & Julia Bittmann & Martina Peritore & Mathilde Courtes & Benjamin Pardo & Michael Wierer & Matthias Mann & Boris Pfander, 2022. "Unscheduled DNA replication in G1 causes genome instability and damage signatures indicative of replication collisions," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    20. Cristiana Bersaglieri & Jelena Kresoja-Rakic & Shivani Gupta & Dominik Bär & Rostyslav Kuzyakiv & Martina Panatta & Raffaella Santoro, 2022. "Genome-wide maps of nucleolus interactions reveal distinct layers of repressive chromatin domains," Nature Communications, Nature, vol. 13(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47934-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.