IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-32799-8.html
   My bibliography  Save this article

Isoform-specific and ubiquitination dependent recruitment of Tet1 to replicating heterochromatin modulates methylcytosine oxidation

Author

Listed:
  • María Arroyo

    (Technical University of Darmstadt)

  • Florian D. Hastert

    (Technical University of Darmstadt
    Section AIDS and newly emerging pathogens, Paul Ehrlich Institute)

  • Andreas Zhadan

    (Technical University of Darmstadt)

  • Florian Schelter

    (Ludwig Maximilians University)

  • Susanne Zimbelmann

    (Technical University of Darmstadt)

  • Cathia Rausch

    (Technical University of Darmstadt
    University of Luxembourg)

  • Anne K. Ludwig

    (Technical University of Darmstadt
    University Hospital Heidelberg)

  • Thomas Carell

    (Ludwig Maximilians University)

  • M. Cristina Cardoso

    (Technical University of Darmstadt)

Abstract

Oxidation of the epigenetic DNA mark 5-methylcytosine by Tet dioxygenases is an established route to diversify the epigenetic information, modulate gene expression and overall cellular (patho-)physiology. Here, we demonstrate that Tet1 and its short isoform Tet1s exhibit distinct nuclear localization during DNA replication resulting in aberrant cytosine modification levels in human and mouse cells. We show that Tet1 is tethered away from heterochromatin via its zinc finger domain, which is missing in Tet1s allowing its targeting to these regions. We find that Tet1s interacts with and is ubiquitinated by CRL4(VprBP). The ubiquitinated Tet1s is then recognized by Uhrf1 and recruited to late replicating heterochromatin. This leads to spreading of 5-methylcytosine oxidation to heterochromatin regions, LINE 1 activation and chromatin decondensation. In summary, we elucidate a dual regulation mechanism of Tet1, contributing to the understanding of how epigenetic information can be diversified by spatio-temporal directed Tet1 catalytic activity.

Suggested Citation

  • María Arroyo & Florian D. Hastert & Andreas Zhadan & Florian Schelter & Susanne Zimbelmann & Cathia Rausch & Anne K. Ludwig & Thomas Carell & M. Cristina Cardoso, 2022. "Isoform-specific and ubiquitination dependent recruitment of Tet1 to replicating heterochromatin modulates methylcytosine oxidation," Nature Communications, Nature, vol. 13(1), pages 1-28, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32799-8
    DOI: 10.1038/s41467-022-32799-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-32799-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-32799-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Henry D. Herce & Wen Deng & Jonas Helma & Heinrich Leonhardt & M. Cristina Cardoso, 2013. "Visualization and targeted disruption of protein interactions in living cells," Nature Communications, Nature, vol. 4(1), pages 1-8, December.
    2. Jafar Sharif & Masahiro Muto & Shin-ichiro Takebayashi & Isao Suetake & Akihiro Iwamatsu & Takaho A. Endo & Jun Shinga & Yoko Mizutani-Koseki & Tetsuro Toyoda & Kunihiro Okamura & Shoji Tajima & Kohzo, 2007. "The SRA protein Np95 mediates epigenetic inheritance by recruiting Dnmt1 to methylated DNA," Nature, Nature, vol. 450(7171), pages 908-912, December.
    3. Myunggon Ko & Jungeun An & Hozefa S. Bandukwala & Lukas Chavez & Tarmo Äijö & William A. Pastor & Matthew F. Segal & Huiming Li & Kian Peng Koh & Harri Lähdesmäki & Patrick G. Hogan & L. Aravind & Anj, 2013. "Modulation of TET2 expression and 5-methylcytosine oxidation by the CXXC domain protein IDAX," Nature, Nature, vol. 497(7447), pages 122-126, May.
    4. Teresa A. Soucy & Peter G. Smith & Michael A. Milhollen & Allison J. Berger & James M. Gavin & Sharmila Adhikari & James E. Brownell & Kristine E. Burke & David P. Cardin & Stephen Critchley & Courtne, 2009. "An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer," Nature, Nature, vol. 458(7239), pages 732-736, April.
    5. Corella S. Casas-Delucchi & Alessandro Brero & Hans-Peter Rahn & Irina Solovei & Anton Wutz & Thomas Cremer & Heinrich Leonhardt & M. Cristina Cardoso, 2011. "Histone acetylation controls the inactive X chromosome replication dynamics," Nature Communications, Nature, vol. 2(1), pages 1-11, September.
    6. Xiaoli Liu & Qinqin Gao & Pishun Li & Qian Zhao & Jiqin Zhang & Jiwen Li & Haruhiko Koseki & Jiemin Wong, 2013. "UHRF1 targets DNMT1 for DNA methylation through cooperative binding of hemi-methylated DNA and methylated H3K9," Nature Communications, Nature, vol. 4(1), pages 1-13, June.
    7. V. O. Chagin & C. S. Casas-Delucchi & M. Reinhart & L. Schermelleh & Y. Markaki & A. Maiser & J. J. Bolius & A. Bensimon & M. Fillies & P. Domaing & Y. M. Rozanov & H. Leonhardt & M. C. Cardoso, 2016. "4D Visualization of replication foci in mammalian cells corresponding to individual replicons," Nature Communications, Nature, vol. 7(1), pages 1-12, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kosuke Yamaguchi & Xiaoying Chen & Brianna Rodgers & Fumihito Miura & Pavel Bashtrykov & Frédéric Bonhomme & Catalina Salinas-Luypaert & Deis Haxholli & Nicole Gutekunst & Bihter Özdemir Aygenli & Lau, 2024. "Non-canonical functions of UHRF1 maintain DNA methylation homeostasis in cancer cells," Nature Communications, Nature, vol. 15(1), pages 1-18, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu-Jung Tseng & Yuki Kageyama & Rebecca L. Murdaugh & Ayumi Kitano & Jong Hwan Kim & Kevin A. Hoegenauer & Jonathan Tiessen & Mackenzie H. Smith & Hidetaka Uryu & Koichi Takahashi & James F. Martin & , 2024. "Increased iron uptake by splenic hematopoietic stem cells promotes TET2-dependent erythroid regeneration," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    2. Amika Kikuchi & Hiroki Onoda & Kosuke Yamaguchi & Satomi Kori & Shun Matsuzawa & Yoshie Chiba & Shota Tanimoto & Sae Yoshimi & Hiroki Sato & Atsushi Yamagata & Mikako Shirouzu & Naruhiko Adachi & Jafa, 2022. "Structural basis for activation of DNMT1," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Debasish Paul & Stephen C. Kales & James A. Cornwell & Marwa M. Afifi & Ganesha Rai & Alexey Zakharov & Anton Simeonov & Steven D. Cappell, 2022. "Revealing β-TrCP activity dynamics in live cells with a genetically encoded biosensor," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    4. Zeyang Wang & Rui Fan & Angela Russo & Filippo M. Cernilogar & Alexander Nuber & Silvia Schirge & Irina Shcherbakova & Iva Dzhilyanova & Enes Ugur & Tobias Anton & Lisa Richter & Heinrich Leonhardt & , 2022. "Dominant role of DNA methylation over H3K9me3 for IAP silencing in endoderm," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    5. Irineos Papakyriacou & Ginte Kutkaite & Marta Rúbies Bedós & Divya Nagarajan & Liam P. Alford & Michael P. Menden & Yumeng Mao, 2024. "Loss of NEDD8 in cancer cells causes vulnerability to immune checkpoint blockade in triple-negative breast cancer," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    6. Gang Xue & Jianing Xie & Matthias Hinterndorfer & Marko Cigler & Lara Dötsch & Hana Imrichova & Philipp Lampe & Xiufen Cheng & Soheila Rezaei Adariani & Georg E. Winter & Herbert Waldmann, 2023. "Discovery of a Drug-like, Natural Product-Inspired DCAF11 Ligand Chemotype," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    7. Daewon Lee & Eunju Yoon & Su Jin Ham & Kunwoo Lee & Hansaem Jang & Daihn Woo & Da Hyun Lee & Sehyeon Kim & Sekyu Choi & Jongkyeong Chung, 2024. "Diabetic sensory neuropathy and insulin resistance are induced by loss of UCHL1 in Drosophila," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    8. Aurélie Thonel & Johanna K. Ahlskog & Kevin Daupin & Véronique Dubreuil & Jérémy Berthelet & Carole Chaput & Geoffrey Pires & Camille Leonetti & Ryma Abane & Lluís Cordón Barris & Isabelle Leray & Ann, 2022. "CBP-HSF2 structural and functional interplay in Rubinstein-Taybi neurodevelopmental disorder," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
    9. Di Wu & Haomin Li & Mingwei Liu & Jun Qin & Yi Sun, 2022. "The Ube2m-Rbx1 neddylation-Cullin-RING-Ligase proteins are essential for the maintenance of Regulatory T cell fitness," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    10. Yilun Sun & Simone A. Baechler & Xiaohu Zhang & Suresh Kumar & Valentina M. Factor & Yasuhiro Arakawa & Cindy H. Chau & Kanako Okamoto & Anup Parikh & Bob Walker & Yijun P. Su & Jiji Chen & Tabitha Ti, 2023. "Targeting neddylation sensitizes colorectal cancer to topoisomerase I inhibitors by inactivating the DCAF13-CRL4 ubiquitin ligase complex," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    11. Kosuke Yamaguchi & Xiaoying Chen & Brianna Rodgers & Fumihito Miura & Pavel Bashtrykov & Frédéric Bonhomme & Catalina Salinas-Luypaert & Deis Haxholli & Nicole Gutekunst & Bihter Özdemir Aygenli & Lau, 2024. "Non-canonical functions of UHRF1 maintain DNA methylation homeostasis in cancer cells," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    12. Cheng Xu & Hongyi Zhou & Yulan Jin & Khushboo Sahay & Anna Robicsek & Yisong Liu & Kunzhe Dong & Jiliang Zhou & Amanda Barrett & Huabo Su & Weiqin Chen, 2022. "Hepatic neddylation deficiency triggers fatal liver injury via inducing NF-κB-inducing kinase in mice," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    13. Eri Koyanagi & Yoko Kakimoto & Tamiko Minamisawa & Fumiya Yoshifuji & Toyoaki Natsume & Atsushi Higashitani & Tomoo Ogi & Antony M. Carr & Masato T. Kanemaki & Yasukazu Daigaku, 2022. "Global landscape of replicative DNA polymerase usage in the human genome," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    14. Binod Kumar & Natania S. Field & Dale D. Kim & Asif A. Dar & Yanqun Chen & Aishwarya Suresh & Christopher F. Pastore & Li-Yin Hung & Nadia Porter & Keisuke Sawada & Palak Shah & Omar Elbulok & Emily K, 2022. "The ubiquitin ligase Cul5 regulates CD4+ T cell fate choice and allergic inflammation," Nature Communications, Nature, vol. 13(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32799-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.