Author
Listed:
- Soo-Ji Park
(Korea University College of Medicine
Korea University College of Medicine)
- Sungjin Ju
(Korea University College of Medicine
Korea University College of Medicine)
- Won Jun Jung
(Korea University College of Medicine
Korea University College of Medicine)
- Tae Yeong Jeong
(Korea University College of Medicine
Korea University College of Medicine)
- Da Eun Yoon
(Korea University College of Medicine
Korea University College of Medicine)
- Jang Hyeon Lee
(Korea University College of Medicine
Korea University College of Medicine)
- Jiyun Yang
(Korea University College of Medicine
Korea University College of Medicine)
- Hojin Lee
(Korea University College of Medicine)
- Jungmin Choi
(Korea University College of Medicine)
- Hyeon Soo Kim
(Korea University College of Medicine
Korea University College of Medicine)
- Kyoungmi Kim
(Korea University College of Medicine
Korea University College of Medicine)
Abstract
With recent advancements in gene editing technology using the CRISPR/Cas system, there is a demand for more effective gene editors. A key factor facilitating efficient gene editing is effective CRISPR delivery into cells, which is known to be associated with the size of the CRISPR system. Accordingly, compact CRISPR-Cas systems derived from various strains are discovered, among which Un1Cas12f1 is 2.6 times smaller than SpCas9, providing advantages for gene therapy research. Despite extensive engineering efforts to improve Un1Cas12f1, the editing efficiency of Un1Cas12f1 is still shown to be low depending on the target site. To overcome this limitation, we develop enhanced Cas12f1 (eCas12f1), which exhibits gene editing activity similar to SpCas9 and AsCpf1, even in gene targets where previously improved Un1Cas12f1 variants showed low gene editing efficiency. Furthermore, we demonstrate that eCas12f1 efficiently induces apoptosis in cancer cells and is compatible with base editing and regulation of gene expression, verifying its high utility and applicability in gene therapy research.
Suggested Citation
Soo-Ji Park & Sungjin Ju & Won Jun Jung & Tae Yeong Jeong & Da Eun Yoon & Jang Hyeon Lee & Jiyun Yang & Hojin Lee & Jungmin Choi & Hyeon Soo Kim & Kyoungmi Kim, 2025.
"Robust genome editing activity and the applications of enhanced miniature CRISPR-Cas12f1,"
Nature Communications, Nature, vol. 16(1), pages 1-12, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56048-w
DOI: 10.1038/s41467-025-56048-w
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56048-w. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.