IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i21p4184-d282883.html
   My bibliography  Save this article

The Thermal Swelling Properties of Plant Chemical Alcohol Waste Liquid

Author

Listed:
  • Dawei Wang

    (Harbin Institute of Technology, School of Energy Science and Engineering, Harbin 150001, China
    Miaoshan Development District, WuHan Boiler Energy Engineering CO., LTD, No.1 Jiangxia Avenue, Wuhan 430200, China)

  • Chuanming Du

    (Harbin Institute of Technology, School of Energy Science and Engineering, Harbin 150001, China)

  • Dongdong Feng

    (Harbin Institute of Technology, School of Energy Science and Engineering, Harbin 150001, China)

  • Yuting Li

    (North China Power Engineering CO., LTD of China Power Engineering Consulting Group, Beijing 100120, China)

  • Yu Zhang

    (Harbin Institute of Technology, School of Energy Science and Engineering, Harbin 150001, China)

  • Yijun Zhao

    (Harbin Institute of Technology, School of Energy Science and Engineering, Harbin 150001, China)

  • Guangbo Zhao

    (Harbin Institute of Technology, School of Energy Science and Engineering, Harbin 150001, China)

Abstract

In the present study, the expansion characteristics of plant chemical alcohol waste liquid were experimentally studied with a vertical tube furnace system. The results showed that the droplet quality, heating temperature, and atmosphere directly influenced the droplet expansion. The droplet mass had nothing to do with the swelling volume index (SVI) but had a significant influence on the expansion time, with a larger droplet mass and longer expansion time. The heating temperature had a significant influence on the expansion characteristics of the waste liquid. As the heating temperature increased, the droplet SVI became larger with a shorter expansion time. The nitrogen atmosphere was more conducive to droplet volume expansion than the air atmosphere but had less of an effect on the expansion time. The volume of waste liquid droplets expanded more than 5 times, forming an internal porous structure, thereby increasing the comparative area and the probability of contact with oxygen to facilitate the combustion of the waste liquid.

Suggested Citation

  • Dawei Wang & Chuanming Du & Dongdong Feng & Yuting Li & Yu Zhang & Yijun Zhao & Guangbo Zhao, 2019. "The Thermal Swelling Properties of Plant Chemical Alcohol Waste Liquid," Energies, MDPI, vol. 12(21), pages 1-11, November.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:21:p:4184-:d:282883
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/21/4184/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/21/4184/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Feng, Dongdong & Zhang, Yu & Zhao, Yijun & Sun, Shaozeng, 2018. "Catalytic effects of ion-exchangeable K+ and Ca2+ on rice husk pyrolysis behavior and its gas–liquid–solid product properties," Energy, Elsevier, vol. 152(C), pages 166-177.
    2. Yunqing Zhu & Charles Romain & Charlotte K. Williams, 2016. "Sustainable polymers from renewable resources," Nature, Nature, vol. 540(7633), pages 354-362, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dawei Wang & Guangbo Zhao & Chuanming Du & Dongdong Feng & Lin Wang, 2019. "Combustion Characteristics of Plant Chemical Polyol Waste Liquor in a Pilot Water-Cooled Incinerator," Energies, MDPI, vol. 12(22), pages 1-18, November.
    2. Bao Wang & Yujie Li & Jianan Zhou & Yi Wang & Xun Tao & Xiang Zhang & Weiming Song, 2021. "Thermogravimetric and Kinetic Analysis of High-Temperature Thermal Conversion of Pine Wood Sawdust under CO 2 /Ar," Energies, MDPI, vol. 14(17), pages 1-16, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tana Tana & Pengfei Han & Aidan J. Brock & Xin Mao & Sarina Sarina & Eric R. Waclawik & Aijun Du & Steven E. Bottle & Huai-Yong Zhu, 2023. "Photocatalytic conversion of sugars to 5-hydroxymethylfurfural using aluminium(III) and fulvic acid," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. He-Ming Dong & Qian Du & Dun Li & Zhao-Yang Cui & Jian-Min Gao & Shao-Hua Wu, 2019. "Impacts of Organic Structures and Inherent Minerals of Coal on Soot Formation during Pyrolysis," Energies, MDPI, vol. 12(23), pages 1-16, November.
    3. Andreas Schneider & Thomas B. Lystbæk & Daniel Markthaler & Niels Hansen & Bernhard Hauer, 2024. "Biocatalytic stereocontrolled head-to-tail cyclizations of unbiased terpenes as a tool in chemoenzymatic synthesis," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Konrad, Kai A. & Lommerud, Kjell Erik, 2021. "Effective climate policy needs non-combustion uses for hydrocarbons," Energy Policy, Elsevier, vol. 157(C).
    5. Dawei Wang & Guangbo Zhao & Chuanming Du & Dongdong Feng & Lin Wang, 2019. "Combustion Characteristics of Plant Chemical Polyol Waste Liquor in a Pilot Water-Cooled Incinerator," Energies, MDPI, vol. 12(22), pages 1-18, November.
    6. Amy Fitzgerald & Will Proud & Ali Kandemir & Richard J. Murphy & David A. Jesson & Richard S. Trask & Ian Hamerton & Marco L. Longana, 2021. "A Life Cycle Engineering Perspective on Biocomposites as a Solution for a Sustainable Recovery," Sustainability, MDPI, vol. 13(3), pages 1-25, January.
    7. Puck Bos & Linda Ritzen & Sonja van Dam & Ruud Balkenende & Conny Bakker, 2024. "Bio-Based Plastics in Product Design: The State of the Art and Challenges to Overcome," Sustainability, MDPI, vol. 16(8), pages 1-19, April.
    8. Daniel H. Weinland & Kevin van der Maas & Yue Wang & Bruno Bottega Pergher & Robert-Jan van Putten & Bing Wang & Gert-Jan M. Gruter, 2022. "Overcoming the low reactivity of biobased, secondary diols in polyester synthesis," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    9. Jiang, Yuan & Zong, Peijie & Bao, Yuan & Zhang, Xin & Wei, Haixin & Tian, Bin & Tian, Yuanyu & Qiao, Yingyun & Zhang, Juntao, 2022. "Catalytic conversion of gaseous tar using coal char catalyst in the two-stage downer reactor," Energy, Elsevier, vol. 242(C).
    10. Nicholas M. Holden & Andrew M. Neill & Jane C. Stout & Derek O’Brien & Michael A. Morris, 2023. "Biocircularity: a Framework to Define Sustainable, Circular Bioeconomy," Circular Economy and Sustainability, Springer, vol. 3(1), pages 77-91, March.
    11. Xiaoqian Wang & Yang Huang & Xiaoyu Xie & Yan Liu & Ziyu Huo & Maverick Lin & Hongliang Xin & Rong Tong, 2023. "Bayesian-optimization-assisted discovery of stereoselective aluminum complexes for ring-opening polymerization of racemic lactide," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    12. Aaldering, Lukas Jan & Leker, Jens & Song, Chie Hoon, 2019. "Uncovering the dynamics of market convergence through M&A," Technological Forecasting and Social Change, Elsevier, vol. 138(C), pages 95-114.
    13. Erfan Oliaei & Peter Olsén & Tom Lindström & Lars A. Berglund, 2022. "Highly reinforced and degradable lignocellulose biocomposites by polymerization of new polyester oligomers," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    14. Hua Zhou & Yue Ren & Bingxin Yao & Zhenhua Li & Ming Xu & Lina Ma & Xianggui Kong & Lirong Zheng & Mingfei Shao & Haohong Duan, 2023. "Scalable electrosynthesis of commodity chemicals from biomass by suppressing non-Faradaic transformations," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    15. Mousavi-Avval, Seyed Hashem & Sahoo, Kamalakanta & Nepal, Prakash & Runge, Troy & Bergman, Richard, 2023. "Environmental impacts and techno-economic assessments of biobased products: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).
    16. Xun Zhang & Wenqi Guo & Chengjian Zhang & Xinghong Zhang, 2023. "A recyclable polyester library from reversible alternating copolymerization of aldehyde and cyclic anhydride," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    17. Imtiaz Anando, Ahmed & Ehsan, M Monjurul & Karim, Md Rezwanul & Bhuiyan, Arafat A. & Ahiduzzaman, Md & Karim, Azharul, 2023. "Thermochemical pretreatments to improve the fuel properties of rice husk: A review," Renewable Energy, Elsevier, vol. 215(C).
    18. Gao, Xiaoyan & Zhang, Yaning & Xu, Fei & Yin, Zhaoqin & Wang, Yingying & Bao, Fubing & Li, Bingxi, 2019. "Experimental and kinetic studies on the intrinsic reactivities of rice husk char," Renewable Energy, Elsevier, vol. 135(C), pages 608-616.
    19. Liu, Chao & Liu, Jingyong & Evrendilek, Fatih & Xie, Wuming & Kuo, Jiahong & Buyukada, Musa, 2020. "Bioenergy and emission characterizations of catalytic combustion and pyrolysis of litchi peels via TG-FTIR-MS and Py-GC/MS," Renewable Energy, Elsevier, vol. 148(C), pages 1074-1093.
    20. Yong Huang & Yiling Wan & Shasha Liu & Yimeng Zhang & Huanhuan Ma & Shu Zhang & Jianbin Zhou, 2019. "A Downdraft Fixed-Bed Biomass Gasification System with Integrated Products of Electricity, Heat, and Biochar: The Key Features and Initial Commercial Performance," Energies, MDPI, vol. 12(15), pages 1-9, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:21:p:4184-:d:282883. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.