IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-34716-5.html
   My bibliography  Save this article

Improved pharmacodynamics of epidermal growth factor via microneedles-based self-powered transcutaneous electrical stimulation

Author

Listed:
  • Yuan Yang

    (Chinese Academy of Sciences
    Third Military Medical University (Army Medical University)
    University of Chinese Academy of Sciences)

  • Ruizeng Luo

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Shengyu Chao

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Jiangtao Xue

    (Beijing Institute of Technology)

  • Dongjie Jiang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Yun Hao Feng

    (Beijing University of Chemical Technology)

  • Xin Dong Guo

    (Beijing University of Chemical Technology)

  • Dan Luo

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences
    Guangxi University)

  • Jiaping Zhang

    (Third Military Medical University (Army Medical University))

  • Zhou Li

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences
    Guangxi University
    Chinese Academy of Sciences)

  • Zhong Lin Wang

    (Chinese Academy of Sciences
    Georgia Institute of Technology)

Abstract

Epidermal growth factor is an excellent drug for promoting wound healing; however, its conventional administration strategies are associated with pharmacodynamic challenges, such as low transdermal permeability, reduction, and receptor desensitization. Here, we develop a microneedle-based self-powered transcutaneous electrical stimulation system (mn-STESS) by integrating a sliding free-standing triboelectric nanogenerator with a microneedle patch to achieve improved epidermal growth factor pharmacodynamics. We show that the mn-STESS facilitates drug penetration and utilization by using microneedles to pierce the stratum corneum. More importantly, we find that it converts the mechanical energy of finger sliding into electricity and mediates transcutaneous electrical stimulation through microneedles. We demonstrate that the electrical stimulation applied by mn-STESS acts as an “adjuvant” that suppresses the reduction of epidermal growth factor by glutathione and upregulates its receptor expression in keratinocyte cells, successfully compensating for receptor desensitization. Collectively, this work highlights the promise of self-powered electrical adjuvants in improving drug pharmacodynamics, creating combinatorial therapeutic strategies for traditional drugs.

Suggested Citation

  • Yuan Yang & Ruizeng Luo & Shengyu Chao & Jiangtao Xue & Dongjie Jiang & Yun Hao Feng & Xin Dong Guo & Dan Luo & Jiaping Zhang & Zhou Li & Zhong Lin Wang, 2022. "Improved pharmacodynamics of epidermal growth factor via microneedles-based self-powered transcutaneous electrical stimulation," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34716-5
    DOI: 10.1038/s41467-022-34716-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-34716-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-34716-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Seung Yun Yang & Eoin D. O'Cearbhaill & Geoffroy C Sisk & Kyeng Min Park & Woo Kyung Cho & Martin Villiger & Brett E. Bouma & Bohdan Pomahac & Jeffrey M. Karp, 2013. "A bio-inspired swellable microneedle adhesive for mechanical interlocking with tissue," Nature Communications, Nature, vol. 4(1), pages 1-10, June.
    2. Han Ouyang & Zhuo Liu & Ning Li & Bojing Shi & Yang Zou & Feng Xie & Ye Ma & Zhe Li & Hu Li & Qiang Zheng & Xuecheng Qu & Yubo Fan & Zhong Lin Wang & Hao Zhang & Zhou Li, 2019. "Symbiotic cardiac pacemaker," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    3. Jemima Ho & Xuexin Yang & Spyridoula-Angeliki Nikou & Nessim Kichik & Andrew Donkin & Nicole O. Ponde & Jonathan P. Richardson & Remi L. Gratacap & Linda S. Archambault & Christian P. Zwirner & Celia , 2019. "Candidalysin activates innate epithelial immune responses via epidermal growth factor receptor," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
    4. Sharmistha Chakraborty & Li Li & Vineshkumar Thidil Puliyappadamba & Gao Guo & Kimmo J. Hatanpaa & Bruce Mickey & Rhonda F. Souza & Peggy Vo & Joachim Herz & Mei-Ru Chen & David A. Boothman & Tej K. P, 2014. "Constitutive and ligand-induced EGFR signalling triggers distinct and mutually exclusive downstream signalling networks," Nature Communications, Nature, vol. 5(1), pages 1-15, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhouquan Sun & Yuefan Jin & Jiabei Luo & Linpeng Li & Yue Ding & Yu Luo & Yan Qi & Yaogang Li & Qinghong Zhang & Kerui Li & Haibo Shi & Shankai Yin & Hongzhi Wang & Hui Wang & Chengyi Hou, 2024. "A bioabsorbable mechanoelectric fiber as electrical stimulation suture," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Caixia Li & Yongsheng Zhu & Fengxin Sun & Changjun Jia & Tianming Zhao & Yupeng Mao & Haidong Yang, 2022. "Research Progress on Triboelectric Nanogenerator for Sports Applications," Energies, MDPI, vol. 15(16), pages 1-15, August.
    2. Shuo Li & Yong Zhang & Xiaoping Liang & Haomin Wang & Haojie Lu & Mengjia Zhu & Huimin Wang & Mingchao Zhang & Xinping Qiu & Yafeng Song & Yingying Zhang, 2022. "Humidity-sensitive chemoelectric flexible sensors based on metal-air redox reaction for health management," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. R. Sumanth Iyer & Sarah R. Needham & Ioannis Galdadas & Benjamin M. Davis & Selene K. Roberts & Rico C. H. Man & Laura C. Zanetti-Domingues & David T. Clarke & Gilbert O. Fruhwirth & Peter J. Parker &, 2024. "Drug-resistant EGFR mutations promote lung cancer by stabilizing interfaces in ligand-free kinase-active EGFR oligomers," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    4. Zhuo Liu & Yiran Hu & Xuecheng Qu & Ying Liu & Sijing Cheng & Zhengmin Zhang & Yizhu Shan & Ruizeng Luo & Sixian Weng & Hui Li & Hongxia Niu & Min Gu & Yan Yao & Bojing Shi & Ningning Wang & Wei Hua &, 2024. "A self-powered intracardiac pacemaker in swine model," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Tian-Yi Zhang & Yao-Qi Chen & Jing-Cong Tan & Jin-An Zhou & Wan-Ning Chen & Tong Jiang & Jin-Yin Zha & Xiang-Kang Zeng & Bo-Wen Li & Lu-Qi Wei & Yun Zou & Lu-Yao Zhang & Yue-Mei Hong & Xiu-Li Wang & R, 2024. "Global fungal-host interactome mapping identifies host targets of candidalysin," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    6. Zhouquan Sun & Yuefan Jin & Jiabei Luo & Linpeng Li & Yue Ding & Yu Luo & Yan Qi & Yaogang Li & Qinghong Zhang & Kerui Li & Haibo Shi & Shankai Yin & Hongzhi Wang & Hui Wang & Chengyi Hou, 2024. "A bioabsorbable mechanoelectric fiber as electrical stimulation suture," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    7. Hui Deng & Qian Lei & Chengdi Wang & Zhoufeng Wang & Hai Chen & Gang Wang & Na Yang & Dan Huang & Quanwei Yu & Mengling Yao & Xue Xiao & Guonian Zhu & Cheng Cheng & Yangqian Li & Feng Li & Panwen Tian, 2022. "A fluorogenic probe for predicting treatment response in non-small cell lung cancer with EGFR-activating mutations," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    8. Shanzhi Lyu & Yonglin He & Xinglei Tao & Yuge Yao & Xiangyi Huang & Yingchao Ma & Zhimin Peng & Yanjun Ding & Yapei Wang, 2022. "Subcutaneous power supply by NIR-II light," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    9. Xinjian Xie & Zhonggang Xu & Xin Yu & Hong Jiang & Hongjiao Li & Wenqian Feng, 2023. "Liquid-in-liquid printing of 3D and mechanically tunable conductive hydrogels," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    10. Xionghui Ding & Hiroto Kambara & Rongxia Guo & Apurva Kanneganti & Maikel Acosta-Zaldívar & Jiajia Li & Fei Liu & Ting Bei & Wanjun Qi & Xuemei Xie & Wenli Han & Ningning Liu & Cunling Zhang & Xiaoyu , 2021. "Inflammasome-mediated GSDMD activation facilitates escape of Candida albicans from macrophages," Nature Communications, Nature, vol. 12(1), pages 1-24, December.
    11. Renjie Qiu & Xingying Zhang & Chen Song & Kaige Xu & Huijia Nong & Yi Li & Xianglong Xing & Kibret Mequanint & Qian Liu & Quan Yuan & Xiaomin Sun & Malcolm Xing & Leyu Wang, 2024. "E-cardiac patch to sense and repair infarcted myocardium," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    12. Ke Gong & Gao Guo & Nicole A. Beckley & Xiaoyao Yang & Yue Zhang & David E. Gerber & John D. Minna & Sandeep Burma & Dawen Zhao & Esra A. Akbay & Amyn A. Habib, 2021. "Comprehensive targeting of resistance to inhibition of RTK signaling pathways by using glucocorticoids," Nature Communications, Nature, vol. 12(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34716-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.