IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-34627-5.html
   My bibliography  Save this article

A fluorogenic probe for predicting treatment response in non-small cell lung cancer with EGFR-activating mutations

Author

Listed:
  • Hui Deng

    (Sichuan University
    Sichuan University
    Sichuan University)

  • Qian Lei

    (Sichuan University
    Sichuan University
    Sichuan University)

  • Chengdi Wang

    (Sichuan University)

  • Zhoufeng Wang

    (Sichuan University
    Sichuan University)

  • Hai Chen

    (Sichuan University
    Sichuan University)

  • Gang Wang

    (Sichuan University)

  • Na Yang

    (Sichuan University)

  • Dan Huang

    (Sichuan University)

  • Quanwei Yu

    (Sichuan University)

  • Mengling Yao

    (Sichuan University)

  • Xue Xiao

    (Sichuan University)

  • Guonian Zhu

    (Sichuan University)

  • Cheng Cheng

    (Sichuan University)

  • Yangqian Li

    (Sichuan University)

  • Feng Li

    (Sichuan University)

  • Panwen Tian

    (Sichuan University)

  • Weimin Li

    (Sichuan University
    Sichuan University
    Sichuan University)

Abstract

Therapeutic responses of non-small cell lung cancer (NSCLC) to epidermal growth factor receptor (EGFR) - tyrosine kinase inhibitors (TKIs) are known to be associated with EGFR mutations. However, a proportion of NSCLCs carrying EGFR mutations still progress on EGFR-TKI underlining the imperfect correlation. Structure-function-based approaches have recently been reported to perform better in retrospectively predicting patient outcomes following EGFR-TKI treatment than exon-based method. Here, we develop a multicolor fluorescence-activated cell sorting (FACS) with an EGFR-TKI-based fluorogenic probe (HX103) to profile active-EGFR in tumors. HX103-based FACS shows an overall agreement with gene mutations of 82.6%, sensitivity of 81.8% and specificity of 83.3% for discriminating EGFR-activating mutations from wild-type in surgical specimens from NSCLC patients. We then translate HX103 to the clinical studies for prediction of EGFR-TKI sensitivity. When integrating computed tomography imaging with HX103-based FACS, we find a high correlation between EGFR-TKI therapy response and probe labeling. These studies demonstrate HX103-based FACS provides a high predictive performance for response to EGFR-TKI, suggesting the potential utility of an EGFR-TKI-based probe in precision medicine trials to stratify NSCLC patients for EGFR-TKI treatment.

Suggested Citation

  • Hui Deng & Qian Lei & Chengdi Wang & Zhoufeng Wang & Hai Chen & Gang Wang & Na Yang & Dan Huang & Quanwei Yu & Mengling Yao & Xue Xiao & Guonian Zhu & Cheng Cheng & Yangqian Li & Feng Li & Panwen Tian, 2022. "A fluorogenic probe for predicting treatment response in non-small cell lung cancer with EGFR-activating mutations," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34627-5
    DOI: 10.1038/s41467-022-34627-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-34627-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-34627-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jacqulyne P. Robichaux & Xiuning Le & R. S. K. Vijayan & J. Kevin Hicks & Simon Heeke & Yasir Y. Elamin & Heather Y. Lin & Hibiki Udagawa & Ferdinandos Skoulidis & Hai Tran & Susan Varghese & Junqin H, 2021. "Structure-based classification predicts drug response in EGFR-mutant NSCLC," Nature, Nature, vol. 597(7878), pages 732-737, September.
    2. Inhee Chung & Robert Akita & Richard Vandlen & Derek Toomre & Joseph Schlessinger & Ira Mellman, 2010. "Spatial control of EGF receptor activation by reversible dimerization on living cells," Nature, Nature, vol. 464(7289), pages 783-787, April.
    3. Sharmistha Chakraborty & Li Li & Vineshkumar Thidil Puliyappadamba & Gao Guo & Kimmo J. Hatanpaa & Bruce Mickey & Rhonda F. Souza & Peggy Vo & Joachim Herz & Mei-Ru Chen & David A. Boothman & Tej K. P, 2014. "Constitutive and ligand-induced EGFR signalling triggers distinct and mutually exclusive downstream signalling networks," Nature Communications, Nature, vol. 5(1), pages 1-15, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shwetha Srinivasan & Raju Regmi & Xingcheng Lin & Courtney A. Dreyer & Xuyan Chen & Steven D. Quinn & Wei He & Matthew A. Coleman & Kermit L. Carraway & Bin Zhang & Gabriela S. Schlau-Cohen, 2022. "Ligand-induced transmembrane conformational coupling in monomeric EGFR," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Michael G. Sugiyama & Aidan I. Brown & Jesus Vega-Lugo & Jazlyn P. Borges & Andrew M. Scott & Khuloud Jaqaman & Gregory D. Fairn & Costin N. Antonescu, 2023. "Confinement of unliganded EGFR by tetraspanin nanodomains gates EGFR ligand binding and signaling," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    3. Shen Zhao & Wu Zhuang & Baohui Han & Zhengbo Song & Wei Guo & Feng Luo & Lin Wu & Yi Hu & Huijuan Wang & Xiaorong Dong & Da Jiang & Mingxia Wang & Liyun Miao & Qian Wang & Junping Zhang & Zhenming Fu , 2023. "Phase 1b trial of anti-EGFR antibody JMT101 and Osimertinib in EGFR exon 20 insertion-positive non-small-cell lung cancer," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    4. R. Sumanth Iyer & Sarah R. Needham & Ioannis Galdadas & Benjamin M. Davis & Selene K. Roberts & Rico C. H. Man & Laura C. Zanetti-Domingues & David T. Clarke & Gilbert O. Fruhwirth & Peter J. Parker &, 2024. "Drug-resistant EGFR mutations promote lung cancer by stabilizing interfaces in ligand-free kinase-active EGFR oligomers," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    5. Tikvah K. Hayes & Elisa Aquilanti & Nicole S. Persky & Xiaoping Yang & Erica E. Kim & Lisa Brenan & Amy B. Goodale & Douglas Alan & Ted Sharpe & Robert E. Shue & Lindsay Westlake & Lior Golomb & Brian, 2024. "Comprehensive mutational scanning of EGFR reveals TKI sensitivities of extracellular domain mutants," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    6. Lingzhi Hong & Muhammad Aminu & Shenduo Li & Xuetao Lu & Milena Petranovic & Maliazurina B. Saad & Pingjun Chen & Kang Qin & Susan Varghese & Waree Rinsurongkawong & Vadeerat Rinsurongkawong & Amy Spe, 2023. "Efficacy and clinicogenomic correlates of response to immune checkpoint inhibitors alone or with chemotherapy in non-small cell lung cancer," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    7. Ziya Kalay & Takahiro K Fujiwara & Akihiro Kusumi, 2012. "Confining Domains Lead to Reaction Bursts: Reaction Kinetics in the Plasma Membrane," PLOS ONE, Public Library of Science, vol. 7(3), pages 1-8, March.
    8. Sunny Li-Yun Chang & Po-Jen Yang & Yen-You Lin & Ya-Jing Jiang & Po-I Liu & Chang-Lun Huang & Shun-Fa Yang & Chih-Hsin Tang, 2022. "Genetic Associations of Visfatin Polymorphisms with EGFR Status and Clinicopathologic Characteristics in Lung Adenocarcinoma," IJERPH, MDPI, vol. 19(22), pages 1-11, November.
    9. Zhdanov, Vladimir P., 2015. "Control of tissue growth by locally produced activator: Liver regeneration," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 279-285.
    10. Iris K. Alderwerelt van Rosenburgh & David M. Lu & Michael J. Grant & Steven E. Stayrook & Manali Phadke & Zenta Walther & Sarah B. Goldberg & Katerina Politi & Mark A. Lemmon & Kumar D. Ashtekar & Yu, 2022. "Biochemical and structural basis for differential inhibitor sensitivity of EGFR with distinct exon 19 mutations," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    11. Manas Pratim Chakraborty & Diptatanu Das & Purav Mondal & Pragya Kaul & Soumi Bhattacharyya & Prosad Kumar Das & Rahul Das, 2024. "Molecular basis of VEGFR1 autoinhibition at the plasma membrane," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    12. Ke Gong & Gao Guo & Nicole A. Beckley & Xiaoyao Yang & Yue Zhang & David E. Gerber & John D. Minna & Sandeep Burma & Dawen Zhao & Esra A. Akbay & Amyn A. Habib, 2021. "Comprehensive targeting of resistance to inhibition of RTK signaling pathways by using glucocorticoids," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    13. Miroslav Blumenberg, 2014. "Differential Transcriptional Effects of EGFR Inhibitors," PLOS ONE, Public Library of Science, vol. 9(9), pages 1-14, September.
    14. Xiajing Gong & Meng Hu & Jinzhong Liu & Geoffrey Kim & James Xu & Amy McKee & Todd Palmby & R. Angelo Claro & Liang Zhao, 2022. "Decoding kinase-adverse event associations for small molecule kinase inhibitors," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    15. Yuan Yang & Ruizeng Luo & Shengyu Chao & Jiangtao Xue & Dongjie Jiang & Yun Hao Feng & Xin Dong Guo & Dan Luo & Jiaping Zhang & Zhou Li & Zhong Lin Wang, 2022. "Improved pharmacodynamics of epidermal growth factor via microneedles-based self-powered transcutaneous electrical stimulation," Nature Communications, Nature, vol. 13(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34627-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.