IDEAS home Printed from https://ideas.repec.org/a/spr/eurphb/v97y2024i10d10.1140_epjb_s10051-024-00795-0.html
   My bibliography  Save this article

Biaxial strain effect on Josephson supercurrent in a 2D Weyl semimetal

Author

Listed:
  • Chunxu Bai

    (Xinyang Normal University)

  • Yanling Yang

    (Xinyang Normal University)

Abstract

Based on the Weyl–Bogoliubov-de Gennes equation, we investigate the impact of biaxial strain on the Josephson supercurrent in a 2D Weyl semimetal Josephson junction, where the biaxial strain is induced by a piezoelectric film. It is shown that the current phase relation can be attenuated and non-monotonically modulated by the transverse and the longitudinal strain strength, respectively. When both are present, the subgap Andreev bound levels and the resulting Josephson supercurrent are sensitive to the potential energy and the length in the weak link region and the gate voltage (biaxial strain), and an enhancement or weakening of the supercurrent by shifting the Weyl nodes without requiring a magnetic or Zeeman term is induced. It is also revealed that the gate voltage (strain) can cause a supercurrent switch, where the cutoff gate voltage depends on the potential energy in the weak link region. The research also explores the temperature dependence of the supercurrent, noting a monotonic decrease and a logistic-like function with increasing temperature due to the thermal effect on subgap Andreev bound levels. The findings of this study are significant for the understanding of superconducting electronics in 2D Weyl semimetal and offering a new avenue for designing strain tunable quantum devices with all-electrical control. Graphical Abstract

Suggested Citation

  • Chunxu Bai & Yanling Yang, 2024. "Biaxial strain effect on Josephson supercurrent in a 2D Weyl semimetal," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 97(10), pages 1-11, October.
  • Handle: RePEc:spr:eurphb:v:97:y:2024:i:10:d:10.1140_epjb_s10051-024-00795-0
    DOI: 10.1140/epjb/s10051-024-00795-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1140/epjb/s10051-024-00795-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1140/epjb/s10051-024-00795-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qian Lin & Meng Xiao & Luqi Yuan & Shanhui Fan, 2016. "Photonic Weyl point in a two-dimensional resonator lattice with a synthetic frequency dimension," Nature Communications, Nature, vol. 7(1), pages 1-7, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matthew Weiner & Xiang Ni & Andrea Alù & Alexander B. Khanikaev, 2022. "Synthetic Pseudo-Spin-Hall effect in acoustic metamaterials," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    2. Yaowen Hu & Mengjie Yu & Neil Sinclair & Di Zhu & Rebecca Cheng & Cheng Wang & Marko Lončar, 2022. "Mirror-induced reflection in the frequency domain," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:97:y:2024:i:10:d:10.1140_epjb_s10051-024-00795-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.