IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-50872-2.html
   My bibliography  Save this article

Integrated triboelectric nanogenerator and radiative cooler for all-weather transparent glass surfaces

Author

Listed:
  • Geon Lee

    (Pohang University of Science and Technology (POSTECH))

  • Hyunjung Kang

    (Pohang University of Science and Technology (POSTECH))

  • Jooyeong Yun

    (Pohang University of Science and Technology (POSTECH))

  • Dongwoo Chae

    (Korea University)

  • Minsu Jeong

    (Pohang University of Science and Technology (POSTECH))

  • Minseo Jeong

    (Yonsei University)

  • Dasol Lee

    (Yonsei University)

  • Miso Kim

    (Sungkyunkwan University (SKKU)
    Sungkyunkwan University (SKKU))

  • Heon Lee

    (Korea University)

  • Junsuk Rho

    (Pohang University of Science and Technology (POSTECH)
    Pohang University of Science and Technology (POSTECH)
    Pohang University of Science and Technology (POSTECH)
    POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics)

Abstract

Sustainable energies from weather are the most ubiquitous and non-depleted resources. However, existing devices exploiting weather-dependent energies are sensitive to weather conditions and geographical locations, making their universal applicability challenging. Herein, we propose an all-weather sustainable glass surface integrating a triboelectric nanogenerator and radiative cooler, which serves as a sustainable device, harvesting energy from raindrops and saving energy on sunny days. By systematically designing transparent, high-performance triboelectric layers, functioning as thermal emitters simultaneously, particularly compatible with radiative cooling components optimized with an evolutionary algorithm, our proposed device achieves optimal performance for all-weather-dependent energies. We generate 248.28 Wm−2 from a single droplet with an energy conversion ratio of 2.5%. Moreover, the inner temperature is cooled down by a maximum of 24.1 °C compared to pristine glass. Notably, as the proposed device is realized to provide high transparency up to 80% in the visible range, we are confident that our proposed device can be applied to versatile applications.

Suggested Citation

  • Geon Lee & Hyunjung Kang & Jooyeong Yun & Dongwoo Chae & Minsu Jeong & Minseo Jeong & Dasol Lee & Miso Kim & Heon Lee & Junsuk Rho, 2024. "Integrated triboelectric nanogenerator and radiative cooler for all-weather transparent glass surfaces," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50872-2
    DOI: 10.1038/s41467-024-50872-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-50872-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-50872-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wanghuai Xu & Huanxi Zheng & Yuan Liu & Xiaofeng Zhou & Chao Zhang & Yuxin Song & Xu Deng & Michael Leung & Zhengbao Yang & Ronald X. Xu & Zhong Lin Wang & Xiao Cheng Zeng & Zuankai Wang, 2020. "A droplet-based electricity generator with high instantaneous power density," Nature, Nature, vol. 578(7795), pages 392-396, February.
    2. Husain, Alaa A.F. & Hasan, Wan Zuha W. & Shafie, Suhaidi & Hamidon, Mohd N. & Pandey, Shyam Sudhir, 2018. "A review of transparent solar photovoltaic technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 779-791.
    3. Aaswath P. Raman & Marc Abou Anoma & Linxiao Zhu & Eden Rephaeli & Shanhui Fan, 2014. "Passive radiative cooling below ambient air temperature under direct sunlight," Nature, Nature, vol. 515(7528), pages 540-544, November.
    4. Parida, Bhubaneswari & Iniyan, S. & Goic, Ranko, 2011. "A review of solar photovoltaic technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1625-1636, April.
    5. Singh, Vineet Kumar & Singal, S.K., 2017. "Operation of hydro power plants-a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 610-619.
    6. Xueke Wu & Jinlei Li & Qinyuan Jiang & Wenshuo Zhang & Baoshun Wang & Run Li & Siming Zhao & Fei Wang & Ya Huang & Pei Lyu & Yanlong Zhao & Jia Zhu & Rufan Zhang, 2023. "An all-weather radiative human body cooling textile," Nature Sustainability, Nature, vol. 6(11), pages 1446-1454, November.
    7. Kishor, Nand & Saini, R.P. & Singh, S.P., 2007. "A review on hydropower plant models and control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(5), pages 776-796, June.
    8. Jie Wang & Changsheng Wu & Yejing Dai & Zhihao Zhao & Aurelia Wang & Tiejun Zhang & Zhong Lin Wang, 2017. "Achieving ultrahigh triboelectric charge density for efficient energy harvesting," Nature Communications, Nature, vol. 8(1), pages 1-8, December.
    9. Miyazaki, T. & Akisawa, A. & Kashiwagi, T., 2005. "Energy savings of office buildings by the use of semi-transparent solar cells for windows," Renewable Energy, Elsevier, vol. 30(3), pages 281-304.
    10. Xiuqiang Li & Bowen Sun & Chenxi Sui & Ankita Nandi & Haoming Fang & Yucan Peng & Gang Tan & Po-Chun Hsu, 2020. "Integration of daytime radiative cooling and solar heating for year-round energy saving in buildings," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gorjian, Shiva & Bousi, Erion & Özdemir, Özal Emre & Trommsdorff, Max & Kumar, Nallapaneni Manoj & Anand, Abhishek & Kant, Karunesh & Chopra, Shauhrat S., 2022. "Progress and challenges of crop production and electricity generation in agrivoltaic systems using semi-transparent photovoltaic technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    2. Xueke Wu & Jinlei Li & Fei Xie & Xun-En Wu & Siming Zhao & Qinyuan Jiang & Shiliang Zhang & Baoshun Wang & Yunrui Li & Di Gao & Run Li & Fei Wang & Ya Huang & Yanlong Zhao & Yingying Zhang & Wei Li & , 2024. "A dual-selective thermal emitter with enhanced subambient radiative cooling performance," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Tiantian Zhang & Meng Wang & Hongxing Yang, 2018. "A Review of the Energy Performance and Life-Cycle Assessment of Building-Integrated Photovoltaic (BIPV) Systems," Energies, MDPI, vol. 11(11), pages 1-34, November.
    4. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    5. Mikhail Vasiliev & Mohammad Nur-E-Alam & Kamal Alameh, 2019. "Recent Developments in Solar Energy-Harvesting Technologies for Building Integration and Distributed Energy Generation," Energies, MDPI, vol. 12(6), pages 1-23, March.
    6. Kit-Ying Chan & Xi Shen & Jie Yang & Keng-Te Lin & Harun Venkatesan & Eunyoung Kim & Heng Zhang & Jeng-Hun Lee & Jinhong Yu & Jinglei Yang & Jang-Kyo Kim, 2022. "Scalable anisotropic cooling aerogels by additive freeze-casting," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    7. Xuan, Qingdong & Li, Guiqiang & Lu, Yashun & Zhao, Bin & Wang, Fuqiang & Pei, Gang, 2021. "Daylighting utilization and uniformity comparison for a concentrator-photovoltaic window in energy saving application on the building," Energy, Elsevier, vol. 214(C).
    8. Xin Xia & Ziqing Zhou & Yinghui Shang & Yong Yang & Yunlong Zi, 2023. "Metallic glass-based triboelectric nanogenerators," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    9. Paula Donaduzzi Rigo & Carmen Brum Rosa & Graciele Rediske & Julio Cezar Mairesse Siluk & Leandro Michels, 2022. "A Software Application to Support Decision-making in Small-scale Photovoltaic Projects," International Journal of Energy Economics and Policy, Econjournals, vol. 12(1), pages 32-39.
    10. Xuan, Qingdong & Yang, Ning & Kai, Mingfeng & Wang, Chuyao & Jiang, Bin & Liu, Xunfen & Li, Guiqiang & Pei, Gang & Zhao, Bin, 2024. "Combined daytime radiative cooling and solar photovoltaic/thermal hybrid system for year-round energy saving in buildings," Energy, Elsevier, vol. 304(C).
    11. Quan Zhang & Yiwen Lv & Yufeng Wang & Shixiong Yu & Chenxi Li & Rujun Ma & Yongsheng Chen, 2022. "Temperature-dependent dual-mode thermal management device with net zero energy for year-round energy saving," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    12. Jianing Song & Wenluan Zhang & Zhengnan Sun & Mengyao Pan & Feng Tian & Xiuhong Li & Ming Ye & Xu Deng, 2022. "Durable radiative cooling against environmental aging," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    13. Chen, Zi & Guo, Wencheng, 2023. "Stability and dynamic response of two-stage hydropower stations cascaded by regulating reservoir," Renewable Energy, Elsevier, vol. 202(C), pages 651-666.
    14. Saoud A. Al-Janahi & Omar Ellabban & Sami G. Al-Ghamdi, 2020. "A Novel BIPV Reconfiguration Algorithm for Maximum Power Generation under Partial Shading," Energies, MDPI, vol. 13(17), pages 1-25, August.
    15. Peng, Jinqing & Curcija, Dragan C. & Thanachareonkit, Anothai & Lee, Eleanor S. & Goudey, Howdy & Selkowitz, Stephen E., 2019. "Study on the overall energy performance of a novel c-Si based semitransparent solar photovoltaic window," Applied Energy, Elsevier, vol. 242(C), pages 854-872.
    16. Hyeog-in Kwon & Yong-su Jeon & Bo-hyun Baek, 2021. "Solar Signage Business Model Design Using the EPSS Framework," Energies, MDPI, vol. 14(21), pages 1-14, October.
    17. Zhao, Bin & Liu, Jie & Hu, Mingke & Ao, Xianze & Li, Lanxin & Xuan, Qingdong & Pei, Gang, 2023. "Performance analysis of a broadband selective absorber/emitter for hybrid utilization of solar thermal and radiative cooling," Renewable Energy, Elsevier, vol. 205(C), pages 763-771.
    18. Zhao, Bin & Wang, Chuyao & Hu, Mingke & Ao, Xianze & Liu, Jie & Xuan, Qingdong & Pei, Gang, 2022. "Light and thermal management of the semi-transparent radiative cooling glass for buildings," Energy, Elsevier, vol. 238(PA).
    19. María Herrando & Alba Ramos, 2022. "Photovoltaic-Thermal (PV-T) Systems for Combined Cooling, Heating and Power in Buildings: A Review," Energies, MDPI, vol. 15(9), pages 1-28, April.
    20. Chae, Young Tae & Kim, Jeehwan & Park, Hongsik & Shin, Byungha, 2014. "Building energy performance evaluation of building integrated photovoltaic (BIPV) window with semi-transparent solar cells," Applied Energy, Elsevier, vol. 129(C), pages 217-227.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50872-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.