IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-33650-w.html
   My bibliography  Save this article

The coupling of the hydrated proton to its first solvation shell

Author

Listed:
  • Markus Schröder

    (Universität Heidelberg)

  • Fabien Gatti

    (Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d’Orsay UMR 8214)

  • David Lauvergnat

    (Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR 8000)

  • Hans-Dieter Meyer

    (Universität Heidelberg)

  • Oriol Vendrell

    (Universität Heidelberg)

Abstract

The Zundel ( $${H}_{5}{O}_{2}^{+}$$ H 5 O 2 + ) and Eigen ( $${H}_{9}{O}_{4}^{+}$$ H 9 O 4 + ) cations play an important role as intermediate structures for proton transfer processes in liquid water. In the gas phase they exhibit radically different infrared (IR) spectra. The question arises: is there a least common denominator structure that explains the IR spectra of both, the Zundel and Eigen cations, and hence of the solvated proton? Full dimensional quantum simulations of these protonated cations demonstrate that two dynamical water molecules and an excess proton constitute this fundamental subunit. Embedded in the static environment of the parent Eigen cation, this subunit reproduces the positions and broadenings of its main excess-proton bands. In isolation, its spectrum reverts to the well-known Zundel ion. Hence, the dynamics of this subunit polarized by an environment suffice to explain the spectral signatures and anharmonic couplings of the solvated proton in its first solvation shell.

Suggested Citation

  • Markus Schröder & Fabien Gatti & David Lauvergnat & Hans-Dieter Meyer & Oriol Vendrell, 2022. "The coupling of the hydrated proton to its first solvation shell," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33650-w
    DOI: 10.1038/s41467-022-33650-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-33650-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-33650-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dominik Marx & Mark E. Tuckerman & Jürg Hutter & Michele Parrinello, 1999. "The nature of the hydrated excess proton in water," Nature, Nature, vol. 397(6720), pages 601-604, February.
    2. J. Carroll & Jih-Jie Chang, 1970. "Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition," Psychometrika, Springer;The Psychometric Society, vol. 35(3), pages 283-319, September.
    3. Ledyard Tucker, 1966. "Some mathematical notes on three-mode factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 31(3), pages 279-311, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mariela González-Narváez & María José Fernández-Gómez & Susana Mendes & José-Luis Molina & Omar Ruiz-Barzola & Purificación Galindo-Villardón, 2021. "Study of Temporal Variations in Species–Environment Association through an Innovative Multivariate Method: MixSTATICO," Sustainability, MDPI, vol. 13(11), pages 1-25, May.
    2. Henk Kiers, 1991. "Hierarchical relations among three-way methods," Psychometrika, Springer;The Psychometric Society, vol. 56(3), pages 449-470, September.
    3. Willem Kloot & Pieter Kroonenberg, 1985. "External analysis with three-mode principal component models," Psychometrika, Springer;The Psychometric Society, vol. 50(4), pages 479-494, December.
    4. Elisa Frutos-Bernal & Ángel Martín del Rey & Irene Mariñas-Collado & María Teresa Santos-Martín, 2022. "An Analysis of Travel Patterns in Barcelona Metro Using Tucker3 Decomposition," Mathematics, MDPI, vol. 10(7), pages 1-17, March.
    5. Yoshio Takane & Forrest Young & Jan Leeuw, 1977. "Nonmetric individual differences multidimensional scaling: An alternating least squares method with optimal scaling features," Psychometrika, Springer;The Psychometric Society, vol. 42(1), pages 7-67, March.
    6. Serrano Cinca, C. & Mar Molinero, C. & Gallizo Larraz, J.L., 2005. "Country and size effects in financial ratios: A European perspective," Global Finance Journal, Elsevier, vol. 16(1), pages 26-47, August.
    7. Giuseppe Brandi & Ruggero Gramatica & Tiziana Di Matteo, 2019. "Unveil stock correlation via a new tensor-based decomposition method," Papers 1911.06126, arXiv.org, revised Apr 2020.
    8. Wilderjans, Tom & Ceulemans, Eva & Van Mechelen, Iven, 2009. "Simultaneous analysis of coupled data blocks differing in size: A comparison of two weighting schemes," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1086-1098, February.
    9. Andrii Babii & Eric Ghysels & Junsu Pan, 2022. "Tensor Principal Component Analysis," Papers 2212.12981, arXiv.org, revised Aug 2023.
    10. Sagarra, Marti & Mar-Molinero, Cecilio & Agasisti, Tommaso, 2017. "Exploring the efficiency of Mexican universities: Integrating Data Envelopment Analysis and Multidimensional Scaling," Omega, Elsevier, vol. 67(C), pages 123-133.
    11. Namgil Lee & Jong-Min Kim, 2018. "Block tensor train decomposition for missing data estimation," Statistical Papers, Springer, vol. 59(4), pages 1283-1305, December.
    12. Xing, Jiping & Wu, Wei & Cheng, Qixiu & Liu, Ronghui, 2022. "Traffic state estimation of urban road networks by multi-source data fusion: Review and new insights," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 595(C).
    13. Donatella Vicari & Paolo Giordani, 2023. "CPclus: Candecomp/Parafac Clustering Model for Three-Way Data," Journal of Classification, Springer;The Classification Society, vol. 40(2), pages 432-465, July.
    14. Zhang, Shuang & Han, Le, 2023. "Robust tensor recovery with nonconvex and nonsmooth regularization," Applied Mathematics and Computation, Elsevier, vol. 438(C).
    15. Richard Sands & Forrest Young, 1980. "Component models for three-way data: An alternating least squares algorithm with optimal scaling features," Psychometrika, Springer;The Psychometric Society, vol. 45(1), pages 39-67, March.
    16. Michel Velden & Tammo Bijmolt, 2006. "Generalized canonical correlation analysis of matrices with missing rows: a simulation study," Psychometrika, Springer;The Psychometric Society, vol. 71(2), pages 323-331, June.
    17. Paolo Giordani & Roberto Rocci & Giuseppe Bove, 2020. "Factor Uniqueness of the Structural Parafac Model," Psychometrika, Springer;The Psychometric Society, vol. 85(3), pages 555-574, September.
    18. Alwin Stegeman & Tam Lam, 2014. "Three-Mode Factor Analysis by Means of Candecomp/Parafac," Psychometrika, Springer;The Psychometric Society, vol. 79(3), pages 426-443, July.
    19. Chen Ling & Gaohang Yu & Liqun Qi & Yanwei Xu, 2021. "T-product factorization method for internet traffic data completion with spatio-temporal regularization," Computational Optimization and Applications, Springer, vol. 80(3), pages 883-913, December.
    20. Giordani, Paolo, 2010. "Three-way analysis of imprecise data," Journal of Multivariate Analysis, Elsevier, vol. 101(3), pages 568-582, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33650-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.