IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-53526-5.html
   My bibliography  Save this article

Bicarbonate-mediated proton transfer requires cations

Author

Listed:
  • Qianbao Wu

    (University of Electronic Science and Technology of China)

  • Na Yang

    (University of Electronic Science and Technology of China)

  • Mengjun Xiao

    (University of Electronic Science and Technology of China)

  • Wei Wang

    (University of Electronic Science and Technology of China)

  • Chunhua Cui

    (University of Electronic Science and Technology of China)

Abstract

Near-neutral HCO3– aqueous solution plays an essential role in respiratory, mineralization and catalysis, yet the interconversion between hydrated CO2, HCO3– and CO32– and the associated proton transfer under such proton-deficient conditions remain uncovered. Here we reveal that cation enables HCO3– to self-dissociate into OH– and CO2 through a pH-independent process, where CO2 hydration and subsequent proton transfer in acid-base reactions lead to the overall exchange of oxygen isotopes between HCO3– and H2O tracked by oxygen isotope-labeled Raman spectroscopy. Isolating HCO3– from cations with crown ether impedes HCO3– dissociation and the following reactions. Further molecular dynamics simulations demonstrate that the interplay between HCO3– and hydrated cations drives HCO3– dissociation. This study suggests a natural proton channel upon coupling HCO3– with cations.

Suggested Citation

  • Qianbao Wu & Na Yang & Mengjun Xiao & Wei Wang & Chunhua Cui, 2024. "Bicarbonate-mediated proton transfer requires cations," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53526-5
    DOI: 10.1038/s41467-024-53526-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-53526-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-53526-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Florian N. Brünig & Manuel Rammler & Ellen M. Adams & Martina Havenith & Roland R. Netz, 2022. "Spectral signatures of excess-proton waiting and transfer-path dynamics in aqueous hydrochloric acid solutions," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Markus Schröder & Fabien Gatti & David Lauvergnat & Hans-Dieter Meyer & Oriol Vendrell, 2022. "The coupling of the hydrated proton to its first solvation shell," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Lei Fan & Xiaowan Bai & Chuan Xia & Xiao Zhang & Xunhua Zhao & Yang Xia & Zhen-Yu Wu & Yingying Lu & Yuanyue Liu & Haotian Wang, 2022. "CO2/carbonate-mediated electrochemical water oxidation to hydrogen peroxide," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cong Liu & Bingbao Mei & Zhaoping Shi & Zheng Jiang & Junjie Ge & Wei Xing & Ping Song & Weilin Xu, 2024. "Operando formation of highly efficient electrocatalysts induced by heteroatom leaching," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Heng Zhu & Ximei Lv & Yuexu Wu & Wentao Wang & Yuping Wu & Shicheng Yan & Yuhui Chen, 2024. "Carbonate-carbonate coupling on platinum surface promotes electrochemical water oxidation to hydrogen peroxide," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Jihyun Baek & Qiu Jin & Nathan Scott Johnson & Yue Jiang & Rui Ning & Apurva Mehta & Samira Siahrostami & Xiaolin Zheng, 2022. "Discovery of LaAlO3 as an efficient catalyst for two-electron water electrolysis towards hydrogen peroxide," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Peike Cao & Xie Quan & Xiaowa Nie & Kun Zhao & Yanming Liu & Shuo Chen & Hongtao Yu & Jingguang G. Chen, 2023. "Metal single-site catalyst design for electrocatalytic production of hydrogen peroxide at industrial-relevant currents," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53526-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.