IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v83y2018i1d10.1007_s11336-017-9558-9.html
   My bibliography  Save this article

Functional Parallel Factor Analysis for Functions of One- and Two-dimensional Arguments

Author

Listed:
  • Ji Yeh Choi

    (McGill University)

  • Heungsun Hwang

    (McGill University)

  • Marieke E. Timmerman

    (University of Groningen)

Abstract

Parallel factor analysis (PARAFAC) is a useful multivariate method for decomposing three-way data that consist of three different types of entities simultaneously. This method estimates trilinear components, each of which is a low-dimensional representation of a set of entities, often called a mode, to explain the maximum variance of the data. Functional PARAFAC permits the entities in different modes to be smooth functions or curves, varying over a continuum, rather than a collection of unconnected responses. The existing functional PARAFAC methods handle functions of a one-dimensional argument (e.g., time) only. In this paper, we propose a new extension of functional PARAFAC for handling three-way data whose responses are sequenced along both a two-dimensional domain (e.g., a plane with x- and y-axis coordinates) and a one-dimensional argument. Technically, the proposed method combines PARAFAC with basis function expansion approximations, using a set of piecewise quadratic finite element basis functions for estimating two-dimensional smooth functions and a set of one-dimensional basis functions for estimating one-dimensional smooth functions. In a simulation study, the proposed method appeared to outperform the conventional PARAFAC. We apply the method to EEG data to demonstrate its empirical usefulness.

Suggested Citation

  • Ji Yeh Choi & Heungsun Hwang & Marieke E. Timmerman, 2018. "Functional Parallel Factor Analysis for Functions of One- and Two-dimensional Arguments," Psychometrika, Springer;The Psychometric Society, vol. 83(1), pages 1-20, March.
  • Handle: RePEc:spr:psycho:v:83:y:2018:i:1:d:10.1007_s11336-017-9558-9
    DOI: 10.1007/s11336-017-9558-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11336-017-9558-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11336-017-9558-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Timmerman, Marieke E. & Kiers, Henk A. L., 2002. "Three-way component analysis with smoothness constraints," Computational Statistics & Data Analysis, Elsevier, vol. 40(3), pages 447-470, September.
    2. Xiao, Guanghua & Wang, Xinlei & Khodursky, Arkady B., 2011. "Modeling Three-Dimensional Chromosome Structures Using Gene Expression Data," Journal of the American Statistical Association, American Statistical Association, vol. 106(493), pages 61-72.
    3. J. Carroll & Jih-Jie Chang, 1970. "Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition," Psychometrika, Springer;The Psychometric Society, vol. 35(3), pages 283-319, September.
    4. Sally A. Wood, 2002. "Bayesian mixture of splines for spatially adaptive nonparametric regression," Biometrika, Biometrika Trust, vol. 89(3), pages 513-528, August.
    5. Pui-Wa Lei, 2009. "Evaluating estimation methods for ordinal data in structural equation modeling," Quality & Quantity: International Journal of Methodology, Springer, vol. 43(3), pages 495-507, May.
    6. Pieter Kroonenberg & Jan Leeuw, 1980. "Principal component analysis of three-mode data by means of alternating least squares algorithms," Psychometrika, Springer;The Psychometric Society, vol. 45(1), pages 69-97, March.
    7. Kenneth A. Bollen & James B. Kirby & Patrick J. Curran & Pamela M. Paxton & Feinian Chen, 2007. "Latent Variable Models Under Misspecification: Two-Stage Least Squares (2SLS) and Maximum Likelihood (ML) Estimators," Sociological Methods & Research, , vol. 36(1), pages 48-86, August.
    8. Ledyard Tucker, 1966. "Some mathematical notes on three-mode factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 31(3), pages 279-311, September.
    9. Richard Sands & Forrest Young, 1980. "Component models for three-way data: An alternating least squares algorithm with optimal scaling features," Psychometrika, Springer;The Psychometric Society, vol. 45(1), pages 39-67, March.
    10. Laura M. Sangalli & James O. Ramsay & Timothy O. Ramsay, 2013. "Spatial spline regression models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(4), pages 681-703, September.
    11. Tim Ramsay, 2002. "Spline smoothing over difficult regions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(2), pages 307-319, May.
    12. Simon N. Wood & Mark V. Bravington & Sharon L. Hedley, 2008. "Soap film smoothing," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(5), pages 931-955, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michel Velden & Tammo Bijmolt, 2006. "Generalized canonical correlation analysis of matrices with missing rows: a simulation study," Psychometrika, Springer;The Psychometric Society, vol. 71(2), pages 323-331, June.
    2. Mariela González-Narváez & María José Fernández-Gómez & Susana Mendes & José-Luis Molina & Omar Ruiz-Barzola & Purificación Galindo-Villardón, 2021. "Study of Temporal Variations in Species–Environment Association through an Innovative Multivariate Method: MixSTATICO," Sustainability, MDPI, vol. 13(11), pages 1-25, May.
    3. Henk Kiers, 1991. "Hierarchical relations among three-way methods," Psychometrika, Springer;The Psychometric Society, vol. 56(3), pages 449-470, September.
    4. Willem Kloot & Pieter Kroonenberg, 1985. "External analysis with three-mode principal component models," Psychometrika, Springer;The Psychometric Society, vol. 50(4), pages 479-494, December.
    5. Elisa Frutos-Bernal & Ángel Martín del Rey & Irene Mariñas-Collado & María Teresa Santos-Martín, 2022. "An Analysis of Travel Patterns in Barcelona Metro Using Tucker3 Decomposition," Mathematics, MDPI, vol. 10(7), pages 1-17, March.
    6. Menafoglio, Alessandra & Secchi, Piercesare, 2017. "Statistical analysis of complex and spatially dependent data: A review of Object Oriented Spatial Statistics," European Journal of Operational Research, Elsevier, vol. 258(2), pages 401-410.
    7. Giuseppe Brandi & Ruggero Gramatica & Tiziana Di Matteo, 2019. "Unveil stock correlation via a new tensor-based decomposition method," Papers 1911.06126, arXiv.org, revised Apr 2020.
    8. Wilderjans, Tom & Ceulemans, Eva & Van Mechelen, Iven, 2009. "Simultaneous analysis of coupled data blocks differing in size: A comparison of two weighting schemes," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1086-1098, February.
    9. Paolo Giordani & Roberto Rocci & Giuseppe Bove, 2020. "Factor Uniqueness of the Structural Parafac Model," Psychometrika, Springer;The Psychometric Society, vol. 85(3), pages 555-574, September.
    10. Alwin Stegeman & Tam Lam, 2014. "Three-Mode Factor Analysis by Means of Candecomp/Parafac," Psychometrika, Springer;The Psychometric Society, vol. 79(3), pages 426-443, July.
    11. Arnone, Eleonora & Azzimonti, Laura & Nobile, Fabio & Sangalli, Laura M., 2019. "Modeling spatially dependent functional data via regression with differential regularization," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 275-295.
    12. Giordani, Paolo, 2010. "Three-way analysis of imprecise data," Journal of Multivariate Analysis, Elsevier, vol. 101(3), pages 568-582, March.
    13. Laura Azzimonti & Laura M. Sangalli & Piercesare Secchi & Maurizio Domanin & Fabio Nobile, 2015. "Blood Flow Velocity Field Estimation Via Spatial Regression With PDE Penalization," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(511), pages 1057-1071, September.
    14. Roberto Rocci & Jos Berge, 2002. "Transforming three-way arrays to maximal simplicity," Psychometrika, Springer;The Psychometric Society, vol. 67(3), pages 351-365, September.
    15. Bilian Chen & Zhening Li & Shuzhong Zhang, 2015. "On optimal low rank Tucker approximation for tensors: the case for an adjustable core size," Journal of Global Optimization, Springer, vol. 62(4), pages 811-832, August.
    16. Timmerman, Marieke E. & Kiers, Henk A. L., 2002. "Three-way component analysis with smoothness constraints," Computational Statistics & Data Analysis, Elsevier, vol. 40(3), pages 447-470, September.
    17. Richard Harshman & Margaret Lundy, 1996. "Uniqueness proof for a family of models sharing features of Tucker's three-mode factor analysis and PARAFAC/candecomp," Psychometrika, Springer;The Psychometric Society, vol. 61(1), pages 133-154, March.
    18. Rubinstein, Alexander & Slutskin, Lev, 2018. "«Multiway data analysis» and the general problem of journals’ ranking," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 50, pages 90-113.
    19. Carlos Martin-Barreiro & John A. Ramirez-Figueroa & Ana B. Nieto-Librero & Víctor Leiva & Ana Martin-Casado & M. Purificación Galindo-Villardón, 2021. "A New Algorithm for Computing Disjoint Orthogonal Components in the Three-Way Tucker Model," Mathematics, MDPI, vol. 9(3), pages 1-22, January.
    20. Bernardi, Mara S. & Carey, Michelle & Ramsay, James O. & Sangalli, Laura M., 2018. "Modeling spatial anisotropy via regression with partial differential regularization," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 15-30.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:83:y:2018:i:1:d:10.1007_s11336-017-9558-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.