IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-30765-y.html
   My bibliography  Save this article

Genome-wide association analysis and replication in 810,625 individuals with varicose veins

Author

Listed:
  • Waheed-Ul-Rahman Ahmed

    (University of Oxford, Botnar Research Centre, Windmill Road)

  • Sam Kleeman

    (Cold Spring Harbor Laboratory)

  • Michael Ng

    (University of Oxford, Botnar Research Centre, Windmill Road)

  • Wei Wang

    (23andMe, Inc.)

  • Adam Auton

    (23andMe, Inc.)

  • Regent Lee

    (University of Oxford, John Radcliffe Hospital)

  • Ashok Handa

    (University of Oxford, John Radcliffe Hospital)

  • Krina T. Zondervan

    (University of Oxford, John Radcliffe Hospital
    University of Oxford, Old Road Campus, Roosevelt Drive)

  • Akira Wiberg

    (University of Oxford, Botnar Research Centre, Windmill Road
    Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital)

  • Dominic Furniss

    (University of Oxford, Botnar Research Centre, Windmill Road
    Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital)

Abstract

Varicose veins affect one-third of Western society, with a significant subset of patients developing venous ulceration, costing $14.9 billion annually in the USA. Current management consists of either compression stockings, or surgical ablation for more advanced disease. Most varicose veins patients report a positive family history, and heritability is ~17%. We describe the largest two-stage genome-wide association study of varicose veins in 401,656 individuals from UK Biobank, and replication in 408,969 individuals from 23andMe (total 135,514 cases and 675,111 controls). Forty-nine signals at 46 susceptibility loci were discovered. We map 237 genes to these loci, several of which are biologically plausible and tractable to therapeutic targeting. Pathway analysis identified enrichment in extracellular matrix biology, inflammation, (lymph)angiogenesis, vascular smooth muscle cell migration, and apoptosis. Using a polygenic risk score (PRS) derived in an independent cohort, we demonstrate its predictive utility and correlation with varicose veins surgery.

Suggested Citation

  • Waheed-Ul-Rahman Ahmed & Sam Kleeman & Michael Ng & Wei Wang & Adam Auton & Regent Lee & Ashok Handa & Krina T. Zondervan & Akira Wiberg & Dominic Furniss, 2022. "Genome-wide association analysis and replication in 810,625 individuals with varicose veins," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30765-y
    DOI: 10.1038/s41467-022-30765-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-30765-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-30765-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Clare Bycroft & Colin Freeman & Desislava Petkova & Gavin Band & Lloyd T. Elliott & Kevin Sharp & Allan Motyer & Damjan Vukcevic & Olivier Delaneau & Jared O’Connell & Adrian Cortes & Samantha Welsh &, 2018. "The UK Biobank resource with deep phenotyping and genomic data," Nature, Nature, vol. 562(7726), pages 203-209, October.
    2. Akira Wiberg & Michael Ng & Annina B. Schmid & Robert W. Smillie & Georgios Baskozos & Michael V. Holmes & K. Künnapuu & R. Mägi & David L. Bennett & Dominic Furniss, 2019. "A genome-wide association analysis identifies 16 novel susceptibility loci for carpal tunnel syndrome," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
    3. Christiaan A de Leeuw & Joris M Mooij & Tom Heskes & Danielle Posthuma, 2015. "MAGMA: Generalized Gene-Set Analysis of GWAS Data," PLOS Computational Biology, Public Library of Science, vol. 11(4), pages 1-19, April.
    4. Kyoko Watanabe & Erdogan Taskesen & Arjen Bochoven & Danielle Posthuma, 2017. "Functional mapping and annotation of genetic associations with FUMA," Nature Communications, Nature, vol. 8(1), pages 1-11, December.
    5. Eric Jorgenson & Nadja Makki & Ling Shen & David C. Chen & Chao Tian & Walter L. Eckalbar & David Hinds & Nadav Ahituv & Andrew Avins, 2015. "A genome-wide association study identifies four novel susceptibility loci underlying inguinal hernia," Nature Communications, Nature, vol. 6(1), pages 1-9, December.
    6. Viktor Lukacs & Jayanti Mathur & Rong Mao & Pinar Bayrak-Toydemir & Melinda Procter & Stuart M. Cahalan & Helen J. Kim & Michael Bandell & Nicola Longo & Ronald W. Day & David A. Stevenson & Ardem Pat, 2015. "Impaired PIEZO1 function in patients with a novel autosomal recessive congenital lymphatic dysplasia," Nature Communications, Nature, vol. 6(1), pages 1-7, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaofeng Zhu & Yihe Yang & Noah Lorincz-Comi & Gen Li & Amy R. Bentley & Paul S. de Vries & Michael Brown & Alanna C. Morrison & Charles N. Rotimi & W. James Gauderman & Dabeeru C. Rao & Hugues Aschar, 2024. "An approach to identify gene-environment interactions and reveal new biological insight in complex traits," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Sophie A. Riesmeijer & Zoha Kamali & Michael Ng & Dmitriy Drichel & Bram Piersma & Kerstin Becker & Thomas B. Layton & Jagdeep Nanchahal & Michael Nothnagel & Ahmad Vaez & Hans Christian Hennies & Pau, 2024. "A genome-wide association meta-analysis implicates Hedgehog and Notch signaling in Dupuytren’s disease," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Zhiqiang Sha & Dick Schijven & Amaia Carrion-Castillo & Marc Joliot & Bernard Mazoyer & Simon E. Fisher & Fabrice Crivello & Clyde Francks, 2021. "The genetic architecture of structural left–right asymmetry of the human brain," Nature Human Behaviour, Nature, vol. 5(9), pages 1226-1239, September.
    4. Charley Xia & Sarah J. Pickett & David C. M. Liewald & Alexander Weiss & Gavin Hudson & W. David Hill, 2023. "The contributions of mitochondrial and nuclear mitochondrial genetic variation to neuroticism," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    5. Xiao-Yu He & Bang-Sheng Wu & Liu Yang & Yu Guo & Yue-Ting Deng & Ze-Yu Li & Chen-Jie Fei & Wei-Shi Liu & Yi-Jun Ge & Jujiao Kang & Jianfeng Feng & Wei Cheng & Qiang Dong & Jin-Tai Yu, 2024. "Genetic associations of protein-coding variants in venous thromboembolism," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    6. Caibo Ning & Linyun Fan & Meng Jin & Wenji Wang & Zhiqiang Hu & Yimin Cai & Liangkai Chen & Zequn Lu & Ming Zhang & Can Chen & Yanmin Li & Fuwei Zhang & Wenzhuo Wang & Yizhuo Liu & Shuoni Chen & Yuan , 2023. "Genome-wide association analysis of left ventricular imaging-derived phenotypes identifies 72 risk loci and yields genetic insights into hypertrophic cardiomyopathy," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    7. Benjamin B. Sun & Stephanie J. Loomis & Fabrizio Pizzagalli & Natalia Shatokhina & Jodie N. Painter & Christopher N. Foley & Megan E. Jensen & Donald G. McLaren & Sai Spandana Chintapalli & Alyssa H. , 2022. "Genetic map of regional sulcal morphology in the human brain from UK biobank data," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    8. Eeva Sliz & Jaakko S. Tyrmi & Nilufer Rahmioglu & Krina T. Zondervan & Christian M. Becker & Outi Uimari & Johannes Kettunen, 2023. "Evidence of a causal effect of genetic tendency to gain muscle mass on uterine leiomyomata," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    9. William R. Reay & Michael P. Geaghan & Murray J. Cairns, 2022. "The genetic architecture of pneumonia susceptibility implicates mucin biology and a relationship with psychiatric illness," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    10. Shahram Bahrami & Kaja Nordengen & Alexey A. Shadrin & Oleksandr Frei & Dennis Meer & Anders M. Dale & Lars T. Westlye & Ole A. Andreassen & Tobias Kaufmann, 2022. "Distributed genetic architecture across the hippocampal formation implies common neuropathology across brain disorders," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    11. Rosalie B. T. M. Sterenborg & Inga Steinbrenner & Yong Li & Melissa N. Bujnis & Tatsuhiko Naito & Eirini Marouli & Tessel E. Galesloot & Oladapo Babajide & Laura Andreasen & Arne Astrup & Bjørn Olav Å, 2024. "Multi-trait analysis characterizes the genetics of thyroid function and identifies causal associations with clinical implications," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    12. Xingjie Hao & Zhonghe Shao & Ning Zhang & Minghui Jiang & Xi Cao & Si Li & Yunlong Guan & Chaolong Wang, 2023. "Integrative genome-wide analyses identify novel loci associated with kidney stones and provide insights into its genetic architecture," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    13. Isabelle Austin-Zimmerman & Daniel F. Levey & Olga Giannakopoulou & Joseph D. Deak & Marco Galimberti & Keyrun Adhikari & Hang Zhou & Spiros Denaxas & Haritz Irizar & Karoline Kuchenbaecker & Andrew M, 2023. "Genome-wide association studies and cross-population meta-analyses investigating short and long sleep duration," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    14. Jakub Kopal & Kuldeep Kumar & Kimia Shafighi & Karin Saltoun & Claudia Modenato & Clara A. Moreau & Guillaume Huguet & Martineau Jean-Louis & Charles-Olivier Martin & Zohra Saci & Nadine Younis & Elis, 2024. "Using rare genetic mutations to revisit structural brain asymmetry," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    15. Catherine M. Francis & Matthias E. Futschik & Jian Huang & Wenjia Bai & Muralidharan Sargurupremraj & Alexander Teumer & Monique M. B. Breteler & Enrico Petretto & Amanda S. R. Ho & Philippe Amouyel &, 2022. "Genome-wide associations of aortic distensibility suggest causality for aortic aneurysms and brain white matter hyperintensities," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    16. Palwende Romuald Boua & Jean-Tristan Brandenburg & Ananyo Choudhury & Hermann Sorgho & Engelbert A. Nonterah & Godfred Agongo & Gershim Asiki & Lisa Micklesfield & Solomon Choma & Francesc Xavier Góme, 2022. "Genetic associations with carotid intima-media thickness link to atherosclerosis with sex-specific effects in sub-Saharan Africans," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    17. Milton Pividori & Sumei Lu & Binglan Li & Chun Su & Matthew E. Johnson & Wei-Qi Wei & Qiping Feng & Bahram Namjou & Krzysztof Kiryluk & Iftikhar J. Kullo & Yuan Luo & Blair D. Sullivan & Benjamin F. V, 2023. "Projecting genetic associations through gene expression patterns highlights disease etiology and drug mechanisms," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    18. Gengjie Jia & Xue Zhong & Hae Kyung Im & Nathan Schoettler & Milton Pividori & D. Kyle Hogarth & Anne I. Sperling & Steven R. White & Edward T. Naureckas & Christopher S. Lyttle & Chikashi Terao & Yoi, 2022. "Discerning asthma endotypes through comorbidity mapping," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    19. Tzu-Ting Chen & Jaeyoung Kim & Max Lam & Yi-Fang Chuang & Yen-Ling Chiu & Shu-Chin Lin & Sang-Hyuk Jung & Beomsu Kim & Soyeon Kim & Chamlee Cho & Injeong Shim & Sanghyeon Park & Yeeun Ahn & Aysu Okbay, 2024. "Shared genetic architectures of educational attainment in East Asian and European populations," Nature Human Behaviour, Nature, vol. 8(3), pages 562-575, March.
    20. Seppe Goovaerts & Hanne Hoskens & Ryan J. Eller & Noah Herrick & Anthony M. Musolf & Cristina M. Justice & Meng Yuan & Sahin Naqvi & Myoung Keun Lee & Dirk Vandermeulen & Heather L. Szabo-Rogers & Pau, 2023. "Joint multi-ancestry and admixed GWAS reveals the complex genetics behind human cranial vault shape," Nature Communications, Nature, vol. 14(1), pages 1-21, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30765-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.