IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-018-08191-w.html
   My bibliography  Save this article

Combining LOPIT with differential ultracentrifugation for high-resolution spatial proteomics

Author

Listed:
  • Aikaterini Geladaki

    (University of Cambridge
    University of Cambridge)

  • Nina Kočevar Britovšek

    (University of Cambridge)

  • Lisa M. Breckels

    (University of Cambridge)

  • Tom S. Smith

    (University of Cambridge)

  • Owen L. Vennard

    (University of Cambridge)

  • Claire M. Mulvey

    (University of Cambridge)

  • Oliver M. Crook

    (University of Cambridge
    Cambridge Institute for Public Health)

  • Laurent Gatto

    (University of Cambridge
    de Duve Institute, UC Louvain)

  • Kathryn S. Lilley

    (University of Cambridge)

Abstract

The study of protein localisation has greatly benefited from high-throughput methods utilising cellular fractionation and proteomic profiling. Hyperplexed Localisation of Organelle Proteins by Isotope Tagging (hyperLOPIT) is a well-established method in this area. It achieves high-resolution separation of organelles and subcellular compartments but is relatively time- and resource-intensive. As a simpler alternative, we here develop Localisation of Organelle Proteins by Isotope Tagging after Differential ultraCentrifugation (LOPIT-DC) and compare this method to the density gradient-based hyperLOPIT approach. We confirm that high-resolution maps can be obtained using differential centrifugation down to the suborganellar and protein complex level. HyperLOPIT and LOPIT-DC yield highly similar results, facilitating the identification of isoform-specific localisations and high-confidence localisation assignment for proteins in suborganellar structures, protein complexes and signalling pathways. By combining both approaches, we present a comprehensive high-resolution dataset of human protein localisations and deliver a flexible set of protocols for subcellular proteomics.

Suggested Citation

  • Aikaterini Geladaki & Nina Kočevar Britovšek & Lisa M. Breckels & Tom S. Smith & Owen L. Vennard & Claire M. Mulvey & Oliver M. Crook & Laurent Gatto & Kathryn S. Lilley, 2019. "Combining LOPIT with differential ultracentrifugation for high-resolution spatial proteomics," Nature Communications, Nature, vol. 10(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-018-08191-w
    DOI: 10.1038/s41467-018-08191-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-08191-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-08191-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Oliver M Crook & Aikaterini Geladaki & Daniel J H Nightingale & Owen L Vennard & Kathryn S Lilley & Laurent Gatto & Paul D W Kirk, 2020. "A semi-supervised Bayesian approach for simultaneous protein sub-cellular localisation assignment and novelty detection," PLOS Computational Biology, Public Library of Science, vol. 16(11), pages 1-21, November.
    2. Jordan Currie & Vyshnavi Manda & Sean K. Robinson & Celine Lai & Vertica Agnihotri & Veronica Hidalgo & R. W. Ludwig & Kai Zhang & Jay Pavelka & Zhao V. Wang & June-Wha Rhee & Maggie P. Y. Lam & Edwar, 2024. "Simultaneous proteome localization and turnover analysis reveals spatiotemporal features of protein homeostasis disruptions," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    3. Yudong Gao & Daichi Shonai & Matthew Trn & Jieqing Zhao & Erik J. Soderblom & S. Alexandra Garcia-Moreno & Charles A. Gersbach & William C. Wetsel & Geraldine Dawson & Dmitry Velmeshev & Yong-hui Jian, 2024. "Proximity analysis of native proteomes reveals phenotypic modifiers in a mouse model of autism and related neurodevelopmental conditions," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    4. Thao Nguyen & Eli J. Costa & Tim Deibert & Jose Reyes & Felix C. Keber & Miroslav Tomschik & Michael Stadlmeier & Meera Gupta & Chirag K. Kumar & Edward R. Cruz & Amanda Amodeo & Jesse C. Gatlin & Mar, 2022. "Differential nuclear import sets the timing of protein access to the embryonic genome," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    5. Ying Zhu & Kerem Can Akkaya & Julia Ruta & Nanako Yokoyama & Cong Wang & Max Ruwolt & Diogo Borges Lima & Martin Lehmann & Fan Liu, 2024. "Cross-link assisted spatial proteomics to map sub-organelle proteomes and membrane protein topologies," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    6. Michael A. Skinnider & Mopelola O. Akinlaja & Leonard J. Foster, 2023. "Mapping protein states and interactions across the tree of life with co-fractionation mass spectrometry," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    7. Oliver M. Crook & Colin T. R. Davies & Lisa M. Breckels & Josie A. Christopher & Laurent Gatto & Paul D. W. Kirk & Kathryn S. Lilley, 2022. "Inferring differential subcellular localisation in comparative spatial proteomics using BANDLE," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
    8. Nicola M. Moloney & Konstantin Barylyuk & Eelco Tromer & Oliver M. Crook & Lisa M. Breckels & Kathryn S. Lilley & Ross F. Waller & Paula MacGregor, 2023. "Mapping diversity in African trypanosomes using high resolution spatial proteomics," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    9. Ana Martinez-Val & Dorte B. Bekker-Jensen & Sophia Steigerwald & Claire Koenig & Ole Østergaard & Adi Mehta & Trung Tran & Krzysztof Sikorski & Estefanía Torres-Vega & Ewa Kwasniewicz & Sólveig Hlín B, 2021. "Spatial-proteomics reveals phospho-signaling dynamics at subcellular resolution," Nature Communications, Nature, vol. 12(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-018-08191-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.