IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v3y2012i1d10.1038_ncomms2004.html
   My bibliography  Save this article

Mechanism of resilin elasticity

Author

Listed:
  • Guokui Qin

    (Tufts University)

  • Xiao Hu

    (Tufts University)

  • Peggy Cebe

    (Tufts University)

  • David L. Kaplan

    (Tufts University)

Abstract

Resilin is critical in the flight and jumping systems of insects as a polymeric rubber-like protein with outstanding elasticity. However, insight into the underlying molecular mechanisms responsible for resilin elasticity remains undefined. Here we report the structure and function of resilin from Drosophila CG15920. A reversible beta-turn transition was identified in the peptide encoded by exon III and for full-length resilin during energy input and release, features that correlate to the rapid deformation of resilin during functions in vivo. Micellar structures and nanoporous patterns formed after beta-turn structures were present via changes in either the thermal or the mechanical inputs. A model is proposed to explain the super elasticity and energy conversion mechanisms of resilin, providing important insight into structure–function relationships for this protein. Furthermore, this model offers a view of elastomeric proteins in general where beta-turn-related structures serve as fundamental units of the structure and elasticity.

Suggested Citation

  • Guokui Qin & Xiao Hu & Peggy Cebe & David L. Kaplan, 2012. "Mechanism of resilin elasticity," Nature Communications, Nature, vol. 3(1), pages 1-9, January.
  • Handle: RePEc:nat:natcom:v:3:y:2012:i:1:d:10.1038_ncomms2004
    DOI: 10.1038/ncomms2004
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms2004
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms2004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elio J. Challita & Prateek Sehgal & Rodrigo Krugner & M. Saad Bhamla, 2023. "Droplet superpropulsion in an energetically constrained insect," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Qi Guo & Guijin Zou & Xuliang Qian & Shujun Chen & Huajian Gao & Jing Yu, 2022. "Hydrogen-bonds mediate liquid-liquid phase separation of mussel derived adhesive peptides," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:3:y:2012:i:1:d:10.1038_ncomms2004. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.