IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-33363-0.html
   My bibliography  Save this article

MYPT1-PP1β phosphatase negatively regulates both chromatin landscape and co-activator recruitment for beige adipogenesis

Author

Listed:
  • Hiroki Takahashi

    (Tohoku University Graduate School of Medicine
    The University of Tokyo)

  • Ge Yang

    (Tohoku University Graduate School of Medicine)

  • Takeshi Yoneshiro

    (The University of Tokyo)

  • Yohei Abe

    (The University of Tokyo)

  • Ryo Ito

    (Tohoku University Graduate School of Medicine)

  • Chaoran Yang

    (Tohoku University Graduate School of Medicine)

  • Junna Nakazono

    (Kyoto University)

  • Mayumi Okamoto-Katsuyama

    (The University of Tokyo)

  • Aoi Uchida

    (The University of Tokyo)

  • Makoto Arai

    (Tohoku University Graduate School of Medicine)

  • Hitomi Jin

    (Tohoku University Graduate School of Medicine)

  • Hyunmi Choi

    (Tohoku University Graduate School of Medicine)

  • Myagmar Tumenjargal

    (Tohoku University Graduate School of Medicine)

  • Shiyu Xie

    (Tohoku University Graduate School of Medicine)

  • Ji Zhang

    (Tohoku University Graduate School of Medicine)

  • Hina Sagae

    (Tohoku University Graduate School of Medicine)

  • Yanan Zhao

    (Tohoku University Graduate School of Medicine)

  • Rei Yamaguchi

    (Tohoku University Graduate School of Medicine)

  • Yu Nomura

    (Tohoku University Graduate School of Medicine)

  • Yuichi Shimizu

    (Tohoku University Graduate School of Medicine)

  • Kaito Yamada

    (Tohoku University Graduate School of Medicine
    Tohoku University Graduate School of Medicine)

  • Satoshi Yasuda

    (Tohoku University Graduate School of Medicine)

  • Hiroshi Kimura

    (Tokyo Institute of Technology)

  • Toshiya Tanaka

    (The University of Tokyo)

  • Youichiro Wada

    (The University of Tokyo)

  • Tatsuhiko Kodama

    (The University of Tokyo)

  • Hiroyuki Aburatani

    (The University of Tokyo)

  • Min-Sheng Zhu

    (Nanjing University)

  • Takeshi Inagaki

    (The University of Tokyo
    Gunma University)

  • Timothy F. Osborne

    (Diabetes and Metabolism of the Johns Hopkins University School of Medicine)

  • Takeshi Kawamura

    (The University of Tokyo)

  • Yasushi Ishihama

    (Kyoto University)

  • Yoshihiro Matsumura

    (Tohoku University Graduate School of Medicine
    The University of Tokyo)

  • Juro Sakai

    (Tohoku University Graduate School of Medicine
    The University of Tokyo)

Abstract

Protein kinase A promotes beige adipogenesis downstream from β-adrenergic receptor signaling by phosphorylating proteins, including histone H3 lysine 9 (H3K9) demethylase JMJD1A. To ensure homeostasis, this process needs to be reversible however, this step is not well understood. We show that myosin phosphatase target subunit 1- protein phosphatase 1β (MYPT1-PP1β) phosphatase activity is inhibited via PKA-dependent phosphorylation, which increases phosphorylated JMJD1A and beige adipogenesis. Mechanistically, MYPT1-PP1β depletion results in JMJD1A-mediated H3K9 demethylation and activation of the Ucp1 enhancer/promoter regions. Interestingly, MYPT1-PP1β also dephosphorylates myosin light chain which regulates actomyosin tension-mediated activation of YAP/TAZ which directly stimulates Ucp1 gene expression. Pre-adipocyte specific Mypt1 deficiency increases cold tolerance with higher Ucp1 levels in subcutaneous white adipose tissues compared to control mice, confirming this regulatory mechanism in vivo. Thus, we have uncovered regulatory cross-talk involved in beige adipogenesis that coordinates epigenetic regulation with direct activation of the mechano-sensitive YAP/TAZ transcriptional co-activators.

Suggested Citation

  • Hiroki Takahashi & Ge Yang & Takeshi Yoneshiro & Yohei Abe & Ryo Ito & Chaoran Yang & Junna Nakazono & Mayumi Okamoto-Katsuyama & Aoi Uchida & Makoto Arai & Hitomi Jin & Hyunmi Choi & Myagmar Tumenjar, 2022. "MYPT1-PP1β phosphatase negatively regulates both chromatin landscape and co-activator recruitment for beige adipogenesis," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33363-0
    DOI: 10.1038/s41467-022-33363-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-33363-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-33363-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yoshihiro Matsumura & Ryo Ito & Ayumu Yajima & Rei Yamaguchi & Toshiya Tanaka & Takeshi Kawamura & Kenta Magoori & Yohei Abe & Aoi Uchida & Takeshi Yoneshiro & Hiroyuki Hirakawa & Ji Zhang & Makoto Ar, 2021. "Spatiotemporal dynamics of SETD5-containing NCoR–HDAC3 complex determines enhancer activation for adipogenesis," Nature Communications, Nature, vol. 12(1), pages 1-19, December.
    2. Keisuke Tateishi & Yuki Okada & Eric M. Kallin & Yi Zhang, 2009. "Role of Jhdm2a in regulating metabolic gene expression and obesity resistance," Nature, Nature, vol. 458(7239), pages 757-761, April.
    3. Yohei Abe & Royhan Rozqie & Yoshihiro Matsumura & Takeshi Kawamura & Ryo Nakaki & Yuya Tsurutani & Kyoko Tanimura-Inagaki & Akira Shiono & Kenta Magoori & Kanako Nakamura & Shotaro Ogi & Shingo Kajimu, 2015. "JMJD1A is a signal-sensing scaffold that regulates acute chromatin dynamics via SWI/SNF association for thermogenesis," Nature Communications, Nature, vol. 6(1), pages 1-14, November.
    4. Yohei Abe & Yosuke Fujiwara & Hiroki Takahashi & Yoshihiro Matsumura & Tomonobu Sawada & Shuying Jiang & Ryo Nakaki & Aoi Uchida & Noriko Nagao & Makoto Naito & Shingo Kajimura & Hiroshi Kimura & Timo, 2018. "Histone demethylase JMJD1A coordinates acute and chronic adaptation to cold stress via thermogenic phospho-switch," Nature Communications, Nature, vol. 9(1), pages 1-16, December.
    5. Sirio Dupont & Leonardo Morsut & Mariaceleste Aragona & Elena Enzo & Stefano Giulitti & Michelangelo Cordenonsi & Francesca Zanconato & Jimmy Le Digabel & Mattia Forcato & Silvio Bicciato & Nicola Elv, 2011. "Role of YAP/TAZ in mechanotransduction," Nature, Nature, vol. 474(7350), pages 179-183, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aurore Claude-Taupin & Pierre Isnard & Alessia Bagattin & Nicolas Kuperwasser & Federica Roccio & Biagina Ruscica & Nicolas Goudin & Meriem Garfa-Traoré & Alice Regnier & Lisa Turinsky & Martine Burti, 2023. "The AMPK-Sirtuin 1-YAP axis is regulated by fluid flow intensity and controls autophagy flux in kidney epithelial cells," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    2. Andreas Lackner & Michael Müller & Magdalena Gamperl & Delyana Stoeva & Olivia Langmann & Henrieta Papuchova & Elisabeth Roitinger & Gerhard Dürnberger & Richard Imre & Karl Mechtler & Paulina A. Lato, 2023. "The Fgf/Erf/NCoR1/2 repressive axis controls trophoblast cell fate," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    3. María García-García & Sara Sánchez-Perales & Patricia Jarabo & Enrique Calvo & Trevor Huyton & Liran Fu & Sheung Chun Ng & Laura Sotodosos-Alonso & Jesús Vázquez & Sergio Casas-Tintó & Dirk Görlich & , 2022. "Mechanical control of nuclear import by Importin-7 is regulated by its dominant cargo YAP," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
    4. Joseph G. Kern & Andrew M. Tilston-Lunel & Anthony Federico & Boting Ning & Amy Mueller & Grace B. Peppler & Eleni Stampouloglou & Nan Cheng & Randy L. Johnson & Marc E. Lenburg & Jennifer E. Beane & , 2022. "Inactivation of LATS1/2 drives luminal-basal plasticity to initiate basal-like mammary carcinomas," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    5. Shuangshuang Wan & Kepeng Wang & Peihong Huang & Xian Guo & Wurui Liu & Yaocheng Li & Jingjing Zhang & Zhiyang Li & Jiacheng Song & Wenjing Yang & Xianzheng Zhang & Xianguang Ding & David Tai Leong & , 2024. "Mechanoelectronic stimulation of autologous extracellular vesicle biosynthesis implant for gut microbiota modulation," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    6. Kirstin Meyer & Nicholas C. Lammers & Lukasz J. Bugaj & Hernan G. Garcia & Orion D. Weiner, 2023. "Optogenetic control of YAP reveals a dynamic communication code for stem cell fate and proliferation," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    7. Zhao Wang & Jan Lauko & Amanda W. Kijas & Elliot P. Gilbert & Petri Turunen & Ramanathan Yegappan & Dongxiu Zou & Jitendra Mata & Alan E. Rowan, 2023. "Snake venom-defined fibrin architecture dictates fibroblast survival and differentiation," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    8. Zheng Zhang & Baoyong Sha & Lingzhu Zhao & Huan Zhang & Jinteng Feng & Cheng Zhang & Lin Sun & Meiqing Luo & Bin Gao & Hui Guo & Zheng Wang & Feng Xu & Tian Jian Lu & Guy M. Genin & Min Lin, 2022. "Programmable integrin and N-cadherin adhesive interactions modulate mechanosensing of mesenchymal stem cells by cofilin phosphorylation," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    9. Sujin Kang & Jaekyung Kim & Areum Park & Minsoo Koh & Wonji Shin & Gayoung Park & Taeyun A. Lee & Hyung Jin Kim & Heonjong Han & Yongbo Kim & Myung Kyung Choi & Jae Hyung Park & Eunhye Lee & Hyun-Soo , 2023. "TRIM40 is a pathogenic driver of inflammatory bowel disease subverting intestinal barrier integrity," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    10. Xiao Chen & Yinglu Li & Fang Zhu & Xinjing Xu & Brian Estrella & Manuel A. Pazos & John T. McGuire & Dimitris Karagiannis & Varun Sahu & Mustafo Mustafokulov & Claudio Scuoppo & Francisco J. Sánchez-R, 2023. "Context-defined cancer co-dependency mapping identifies a functional interplay between PRC2 and MLL-MEN1 complex in lymphoma," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    11. Rui Li & Jingchen Shao & Young-June Jin & Haruya Kawase & Yu Ting Ong & Kerstin Troidl & Qi Quan & Lei Wang & Remy Bonnavion & Astrid Wietelmann & Francoise Helmbacher & Michael Potente & Johannes Gra, 2023. "Endothelial FAT1 inhibits angiogenesis by controlling YAP/TAZ protein degradation via E3 ligase MIB2," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    12. Cheng-Hai Zhang & Yao Gao & Han-Hwa Hung & Zhu Zhuo & Alan J. Grodzinsky & Andrew B. Lassar, 2022. "Creb5 coordinates synovial joint formation with the genesis of articular cartilage," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    13. Cornelis J. Boogerd & Ilaria Perini & Eirini Kyriakopoulou & Su Ji Han & Phit La & Britt Swaan & Jari B. Berkhout & Danielle Versteeg & Jantine Monshouwer-Kloots & Eva Rooij, 2023. "Cardiomyocyte proliferation is suppressed by ARID1A-mediated YAP inhibition during cardiac maturation," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    14. Robin Caire & Estelle Audoux & Mireille Thomas & Elisa Dalix & Aurélien Peyron & Killian Rodriguez & Nicola Pordone & Johann Guillemot & Yann Dickerscheit & Hubert Marotte & François Vandenesch & Fréd, 2022. "YAP promotes cell-autonomous immune responses to tackle intracellular Staphylococcus aureus in vitro," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    15. Jisu Oh & Amy E. Riek & Kevin T. Bauerle & Adriana Dusso & Kyle P. McNerney & Ruteja A. Barve & Isra Darwech & Jennifer E. Sprague & Clare Moynihan & Rong M. Zhang & Greta Kutz & Ting Wang & Xiaoyun X, 2023. "Embryonic vitamin D deficiency programs hematopoietic stem cells to induce type 2 diabetes," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    16. Yoshihiro Matsumura & Ryo Ito & Ayumu Yajima & Rei Yamaguchi & Toshiya Tanaka & Takeshi Kawamura & Kenta Magoori & Yohei Abe & Aoi Uchida & Takeshi Yoneshiro & Hiroyuki Hirakawa & Ji Zhang & Makoto Ar, 2021. "Spatiotemporal dynamics of SETD5-containing NCoR–HDAC3 complex determines enhancer activation for adipogenesis," Nature Communications, Nature, vol. 12(1), pages 1-19, December.
    17. Abdel Rahman Abdel Fattah & Niko Kolaitis & Katrien Daele & Brian Daza & Andika Gregorius Rustandi & Adrian Ranga, 2023. "Targeted mechanical stimulation via magnetic nanoparticles guides in vitro tissue development," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    18. Robin M. Skory & Adam A. Moverley & Goli Ardestani & Yanina Alvarez & Ana Domingo-Muelas & Oz Pomp & Blake Hernandez & Piotr Tetlak & Stephanie Bissiere & Claudio D. Stern & Denny Sakkas & Nicolas Pla, 2023. "The nuclear lamina couples mechanical forces to cell fate in the preimplantation embryo via actin organization," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    19. Jie Fang & Shivendra Singh & Changde Cheng & Sivaraman Natarajan & Heather Sheppard & Ahmed Abu-Zaid & Adam D. Durbin & Ha Won Lee & Qiong Wu & Jacob Steele & Jon P. Connelly & Hongjian Jin & Wenan Ch, 2023. "Genome-wide mapping of cancer dependency genes and genetic modifiers of chemotherapy in high-risk hepatoblastoma," Nature Communications, Nature, vol. 14(1), pages 1-27, December.
    20. Sefora Conti & Valeria Venturini & Adrià Cañellas-Socias & Carme Cortina & Juan F. Abenza & Camille Stephan-Otto Attolini & Emily Middendorp Guerra & Catherine K. Xu & Jia Hui Li & Leone Rossetti & Gi, 2024. "Membrane to cortex attachment determines different mechanical phenotypes in LGR5+ and LGR5- colorectal cancer cells," Nature Communications, Nature, vol. 15(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33363-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.