IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-33231-x.html
   My bibliography  Save this article

The unquantified mass loss of Northern Hemisphere marine-terminating glaciers from 2000–2020

Author

Listed:
  • William Kochtitzky

    (University of Ottawa)

  • Luke Copland

    (University of Ottawa)

  • Wesley Wychen

    (University of Ottawa
    University of Waterloo)

  • Romain Hugonnet

    (LEGOS, Université de Toulouse, CNES, CNRS, IRD, UPS
    Hydrology and Glaciology (VAW), ETH Zürich
    Swiss Federal Institute for Forest, Snow and Landscape Research (WSL))

  • Regine Hock

    (University of Oslo
    University of Alaska Fairbanks)

  • Julian A. Dowdeswell

    (University of Cambridge)

  • Toby Benham

    (University of Cambridge)

  • Tazio Strozzi

    (Gamma Remote Sensing)

  • Andrey Glazovsky

    (Russian Academy of Sciences)

  • Ivan Lavrentiev

    (Russian Academy of Sciences)

  • David R. Rounce

    (Carnegie Mellon University)

  • Romain Millan

    (Institut des Géosciences de l’Environnement, CNES)

  • Alison Cook

    (University of Ottawa)

  • Abigail Dalton

    (University of Ottawa)

  • Hester Jiskoot

    (University of Lethbridge)

  • Jade Cooley

    (University of Lethbridge)

  • Jacek Jania

    (University of Silesia)

  • Francisco Navarro

    (Universidad Politécnica de Madrid)

Abstract

In the Northern Hemisphere, ~1500 glaciers, accounting for 28% of glacierized area outside the Greenland Ice Sheet, terminate in the ocean. Glacier mass loss at their ice-ocean interface, known as frontal ablation, has not yet been comprehensively quantified. Here, we estimate decadal frontal ablation from measurements of ice discharge and terminus position change from 2000 to 2020. We bias-correct and cross-validate estimates and uncertainties using independent sources. Frontal ablation of marine-terminating glaciers contributed an average of 44.47 ± 6.23 Gt a−1 of ice to the ocean from 2000 to 2010, and 51.98 ± 4.62 Gt a−1 from 2010 to 2020. Ice discharge from 2000 to 2020 was equivalent to 2.10 ± 0.22 mm of sea-level rise and comprised approximately 79% of frontal ablation, with the remainder from terminus retreat. Near-coastal areas most impacted include Austfonna, Svalbard, and central Severnaya Zemlya, the Russian Arctic, and a few Alaskan fjords.

Suggested Citation

  • William Kochtitzky & Luke Copland & Wesley Wychen & Romain Hugonnet & Regine Hock & Julian A. Dowdeswell & Toby Benham & Tazio Strozzi & Andrey Glazovsky & Ivan Lavrentiev & David R. Rounce & Romain M, 2022. "The unquantified mass loss of Northern Hemisphere marine-terminating glaciers from 2000–2020," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33231-x
    DOI: 10.1038/s41467-022-33231-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-33231-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-33231-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. M. Zemp & M. Huss & E. Thibert & N. Eckert & R. McNabb & J. Huber & M. Barandun & H. Machguth & S. U. Nussbaumer & I. Gärtner-Roer & L. Thomson & F. Paul & F. Maussion & S. Kutuzov & J. G. Cogley, 2019. "Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016," Nature, Nature, vol. 568(7752), pages 382-386, April.
    2. Romain Hugonnet & Robert McNabb & Etienne Berthier & Brian Menounos & Christopher Nuth & Luc Girod & Daniel Farinotti & Matthias Huss & Ines Dussaillant & Fanny Brun & Andreas Kääb, 2021. "Accelerated global glacier mass loss in the early twenty-first century," Nature, Nature, vol. 592(7856), pages 726-731, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. J. Haacker & B. Wouters & X. Fettweis & I. A. Glissenaar & J. E. Box, 2024. "Atmospheric-river-induced foehn events drain glaciers on Novaya Zemlya," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kai Yin & Sudong Xu & Quan Zhao & Nini Zhang & Mengqi Li, 2021. "Effects of sea surface warming and sea-level rise on tropical cyclone and inundation modeling at Shanghai coast," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 755-784, October.
    2. Caroline Taylor & Tom R. Robinson & Stuart Dunning & J. Rachel Carr & Matthew Westoby, 2023. "Glacial lake outburst floods threaten millions globally," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Yanjun Che & Shijin Wang & Yanqiang Wei & Tao Pu & Xinggang Ma, 2022. "Rapid changes to glaciers increased the outburst flood risk in Guangxieco Proglacial Lake in the Kangri Karpo Mountains, Southeast Qinghai-Tibetan Plateau," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(3), pages 2163-2184, February.
    4. Tong Cui & Yukun Li & Long Yang & Yi Nan & Kunbiao Li & Mahmut Tudaji & Hongchang Hu & Di Long & Muhammad Shahid & Ammara Mubeen & Zhihua He & Bin Yong & Hui Lu & Chao Li & Guangheng Ni & Chunhong Hu , 2023. "Non-monotonic changes in Asian Water Towers’ streamflow at increasing warming levels," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    5. J. Haacker & B. Wouters & X. Fettweis & I. A. Glissenaar & J. E. Box, 2024. "Atmospheric-river-induced foehn events drain glaciers on Novaya Zemlya," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    6. Jing Wei & Laurent Fontaine & Nicolas Valiente & Peter Dörsch & Dag O. Hessen & Alexander Eiler, 2023. "Trajectories of freshwater microbial genomics and greenhouse gas saturation upon glacial retreat," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    7. Taigang Zhang & Weicai Wang & Baosheng An & Lele Wei, 2023. "Enhanced glacial lake activity threatens numerous communities and infrastructure in the Third Pole," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    8. Elke Kellner, 2019. "Social Acceptance of a Multi-Purpose Reservoir in a Recently Deglaciated Landscape in the Swiss Alps," Sustainability, MDPI, vol. 11(14), pages 1-22, July.
    9. Vikram S. Negi & Deep C. Tiwari & Laxman Singh & Shinny Thakur & Indra D. Bhatt, 2022. "Review and synthesis of climate change studies in the Himalayan region," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(9), pages 10471-10502, September.
    10. Song, Biao & Almatrafi, Eydhah & Tan, Xiaofei & Luo, Songhao & Xiong, Weiping & Zhou, Chengyun & Qin, Meng & Liu, Yang & Cheng, Min & Zeng, Guangming & Gong, Jilai, 2022. "Biochar-based agricultural soil management: An application-dependent strategy for contributing to carbon neutrality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    11. Silvio Marta & Roberto Sergio Azzoni & Davide Fugazza & Levan Tielidze & Pritam Chand & Katrin Sieron & Peter Almond & Roberto Ambrosini & Fabien Anthelme & Pablo Alviz Gazitúa & Rakesh Bhambri & Auré, 2021. "The Retreat of Mountain Glaciers since the Little Ice Age: A Spatially Explicit Database," Data, MDPI, vol. 6(10), pages 1-8, October.
    12. Oyetola Ogunkunle & Noor A. Ahmed, 2021. "Overview of Biodiesel Combustion in Mitigating the Adverse Impacts of Engine Emissions on the Sustainable Human–Environment Scenario," Sustainability, MDPI, vol. 13(10), pages 1-28, May.
    13. Elmer Calizaya & Wilber Laqui & Saul Sardón & Fredy Calizaya & Osmar Cuentas & José Cahuana & Carmen Mindani & Walquer Huacani, 2023. "Snow Cover Temporal Dynamic Using MODIS Product, and Its Relationship with Precipitation and Temperature in the Tropical Andean Glaciers in the Alto Santa Sub-Basin (Peru)," Sustainability, MDPI, vol. 15(9), pages 1-20, May.
    14. Christopher P. Loveluck & Levan G. Tielidze & Mikheil Elashvili & Andrei V. Kurbatov & Lela Gadrani & Nathaniel Erb-Satullo & Hans von Suchodoletz & Anca Dan & Hannes Laermanns & Helmut Brückner & Udo, 2024. "Rapid Climate Change, Integrated Human–Environment–Historical Records and Societal Resilience in Georgia," Sustainability, MDPI, vol. 16(16), pages 1-24, August.
    15. Xiaowei Lyu & Yong Zhang & Huanhuan Wang & Xin Wang, 2024. "Mass Balance of Maritime Glaciers in the Southeastern Tibetan Plateau during Recent Decades," Sustainability, MDPI, vol. 16(16), pages 1-23, August.
    16. Michel Wortmann & Doris Duethmann & Christoph Menz & Tobias Bolch & Shaochun Huang & Jiang Tong & Zbigniew W. Kundzewicz & Valentina Krysanova, 2022. "Projected climate change and its impacts on glaciers and water resources in the headwaters of the Tarim River, NW China/Kyrgyzstan," Climatic Change, Springer, vol. 171(3), pages 1-24, April.
    17. Anzhou Ma & Jiejie Zhang & Guohua Liu & Xuliang Zhuang & Guoqiang Zhuang, 2022. "Cryosphere Microbiome Biobanks for Mountain Glaciers in China," Sustainability, MDPI, vol. 14(5), pages 1-18, March.
    18. Zeng, Lijun & Du, Wenjing & Zhao, Laijun & Zhan, Yanhong, 2023. "An inter-provincial transfer fee model under renewable portfolio standard policy," Energy, Elsevier, vol. 277(C).
    19. Berthold, Anne & Cologna, Viktoria & Siegrist, Michael, 2022. "The influence of scarcity perception on people's pro-environmental behavior and their readiness to accept new sustainable technologies," Ecological Economics, Elsevier, vol. 196(C).
    20. Lawrence Tanner & Genevieve Kikukawa & Kaylyn Weits, 2024. "The Temporal and Spatial Dynamics of Succession in a Glacial Foreland in Southern Iceland: The Effects of Landscape Heterogeneity," Land, MDPI, vol. 13(7), pages 1-22, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33231-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.