IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i5p2903-d762409.html
   My bibliography  Save this article

Cryosphere Microbiome Biobanks for Mountain Glaciers in China

Author

Listed:
  • Anzhou Ma

    (Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
    College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
    These authors contributed equally to this work.)

  • Jiejie Zhang

    (Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
    Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101400, China
    Sino-Danish Center for Education and Research, Beijing 101400, China
    These authors contributed equally to this work.)

  • Guohua Liu

    (Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
    College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China)

  • Xuliang Zhuang

    (Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
    Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China)

  • Guoqiang Zhuang

    (Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
    College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China)

Abstract

The glaciers in China have an important role as one of the most climate-sensitive constituents of the Tibetan Plateau which is known as the Asian Water Tower. Although the cryosphere is one of the most extreme environments for organisms, the soils of the glacier foreland harbor surprisingly rich microbiomes. A large amount of accelerated glacier retreat accompanied by global warming will not only raise the sea level, but it will also lead to the massive release of a considerable amount of carbon stored in these glaciers. The responses of glacier microbiomes could alter the biogeochemical cycle of carbon and have a complex impact on climate change. Thus, understanding present-day and future glacier microbiome changes is crucial to assess the feedback on climate change and the impacts on ecosystems. To this end, we discuss here the diversity and biogeochemical functions of the microbiomes in Chinese mountain glacier ecosystems.

Suggested Citation

  • Anzhou Ma & Jiejie Zhang & Guohua Liu & Xuliang Zhuang & Guoqiang Zhuang, 2022. "Cryosphere Microbiome Biobanks for Mountain Glaciers in China," Sustainability, MDPI, vol. 14(5), pages 1-18, March.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:5:p:2903-:d:762409
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/5/2903/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/5/2903/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rachel Mackelprang & Mark P. Waldrop & Kristen M. DeAngelis & Maude M. David & Krystle L. Chavarria & Steven J. Blazewicz & Edward M. Rubin & Janet K. Jansson, 2011. "Metagenomic analysis of a permafrost microbial community reveals a rapid response to thaw," Nature, Nature, vol. 480(7377), pages 368-371, December.
    2. Brent C. Christner & John C. Priscu & Amanda M. Achberger & Carlo Barbante & Sasha P. Carter & Knut Christianson & Alexander B. Michaud & Jill A. Mikucki & Andrew C. Mitchell & Mark L. Skidmore & Tris, 2014. "A microbial ecosystem beneath the West Antarctic ice sheet," Nature, Nature, vol. 512(7514), pages 310-313, August.
    3. Brent C. Christner & John C. Priscu & Amanda M. Achberger & Carlo Barbante & Sasha P. Carter & Knut Christianson & Alexander B. Michaud & Jill A. Mikucki & Andrew C. Mitchell & Mark L. Skidmore & Tris, 2014. "Correction: Corrigendum: A microbial ecosystem beneath the West Antarctic ice sheet," Nature, Nature, vol. 514(7522), pages 394-394, October.
    4. M. Zemp & M. Huss & E. Thibert & N. Eckert & R. McNabb & J. Huber & M. Barandun & H. Machguth & S. U. Nussbaumer & I. Gärtner-Roer & L. Thomson & F. Paul & F. Maussion & S. Kutuzov & J. G. Cogley, 2019. "Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016," Nature, Nature, vol. 568(7752), pages 382-386, April.
    5. T. W. Crowther & K. E. O. Todd-Brown & C. W. Rowe & W. R. Wieder & J. C. Carey & M. B. Machmuller & B. L. Snoek & S. Fang & G. Zhou & S. D. Allison & J. M. Blair & S. D. Bridgham & A. J. Burton & Y. C, 2016. "Quantifying global soil carbon losses in response to warming," Nature, Nature, vol. 540(7631), pages 104-108, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lucas Serra Moncadas & Cyrill Hofer & Paul-Adrian Bulzu & Jakob Pernthaler & Adrian-Stefan Andrei, 2024. "Freshwater genome-reduced bacteria exhibit pervasive episodes of adaptive stasis," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    2. Gavin Piccione & Terrence Blackburn & Slawek Tulaczyk & E. Troy Rasbury & Mathis P. Hain & Daniel E. Ibarra & Katharina Methner & Chloe Tinglof & Brandon Cheney & Paul Northrup & Kathy Licht, 2022. "Subglacial precipitates record Antarctic ice sheet response to late Pleistocene millennial climate cycles," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    3. Iain P. Hartley & Tim C. Hill & Sarah E. Chadburn & Gustaf Hugelius, 2021. "Temperature effects on carbon storage are controlled by soil stabilisation capacities," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    4. Lijiang Hu & Ruikun Zeng & Jianwu Yao & Ziwei Liang & Zhaobing Zeng & Wenying Li & Ronghui Wang & Xianjiang Shu & Yong Chen & Jianfeng Ning, 2024. "Characteristics of the Soil Organic Carbon Pool in Paddy Fields in Guangdong Province, South China," Agriculture, MDPI, vol. 14(9), pages 1-13, August.
    5. Kai Yin & Sudong Xu & Quan Zhao & Nini Zhang & Mengqi Li, 2021. "Effects of sea surface warming and sea-level rise on tropical cyclone and inundation modeling at Shanghai coast," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 755-784, October.
    6. Quanxu Hu & Jinhe Zhang & Huaju Xue & Jingwei Wang & Aiqing Li, 2024. "Spatiotemporal Variations in Carbon Sources and Sinks in National Park Ecosystem and the Impact of Tourism," Sustainability, MDPI, vol. 16(18), pages 1-23, September.
    7. Lawrence Tanner & Genevieve Kikukawa & Kaylyn Weits, 2024. "The Temporal and Spatial Dynamics of Succession in a Glacial Foreland in Southern Iceland: The Effects of Landscape Heterogeneity," Land, MDPI, vol. 13(7), pages 1-22, July.
    8. Qiang Li & Maofang Gao & Zhao-Liang Li, 2022. "Soil Organic Carbon Storage in Australian Wheat Cropping Systems in Response to Climate Change from 1990 to 2060," Land, MDPI, vol. 11(10), pages 1-15, September.
    9. Wang, Chunyu & Li, Sien & Wu, Mousong & Zhang, Wenxin & Guo, Zhenyu & Huang, Siyu & Yang, Danni, 2023. "Co-regulation of temperature and moisture in the irrigated agricultural ecosystem productivity," Agricultural Water Management, Elsevier, vol. 275(C).
    10. Lea Schwengbeck & Lisanne Hölting & Felix Witing, 2023. "Modeling Climate Regulation of Arable Soils in Northern Saxony under the Influence of Climate Change and Management Practices," Sustainability, MDPI, vol. 15(14), pages 1-17, July.
    11. Shuai Ren & Tao Wang & Bertrand Guenet & Dan Liu & Yingfang Cao & Jinzhi Ding & Pete Smith & Shilong Piao, 2024. "Projected soil carbon loss with warming in constrained Earth system models," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    12. Munkhnasan Lamchin & Woo-Kyun Lee & Sonam Wangyel Wang, 2022. "Multi-Temporal Analysis of Past and Future Land-Cover Changes of the Third Pole," Land, MDPI, vol. 11(12), pages 1-19, December.
    13. Meyer, Rachelle S. & Cullen, Brendan R. & Whetton, Penny H. & Robertson, Fiona A. & Eckard, Richard J., 2018. "Potential impacts of climate change on soil organic carbon and productivity in pastures of south eastern Australia," Agricultural Systems, Elsevier, vol. 167(C), pages 34-46.
    14. Elena A. Mikhailova & Garth R. Groshans & Christopher J. Post & Mark A. Schlautman & Gregory C. Post, 2019. "Valuation of Total Soil Carbon Stocks in the Contiguous United States Based on the Avoided Social Cost of Carbon Emissions," Resources, MDPI, vol. 8(4), pages 1-16, September.
    15. Dongwei Liu & Shanlong Li & Weixing Zhu & Yongyang Wang & Shasha Zhang & Yunting Fang, 2023. "Storage and Stability of Soil Organic Carbon in Two Temperate Forests in Northeastern China," Land, MDPI, vol. 12(5), pages 1-14, May.
    16. Daniel H Huson & Sina Beier & Isabell Flade & Anna Górska & Mohamed El-Hadidi & Suparna Mitra & Hans-Joachim Ruscheweyh & Rewati Tappu, 2016. "MEGAN Community Edition - Interactive Exploration and Analysis of Large-Scale Microbiome Sequencing Data," PLOS Computational Biology, Public Library of Science, vol. 12(6), pages 1-12, June.
    17. Xuanyu Tao & Zhifeng Yang & Jiajie Feng & Siyang Jian & Yunfeng Yang & Colin T. Bates & Gangsheng Wang & Xue Guo & Daliang Ning & Megan L. Kempher & Xiao Jun A. Liu & Yang Ouyang & Shun Han & Linwei W, 2024. "Experimental warming accelerates positive soil priming in a temperate grassland ecosystem," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    18. Andrew R. Pearson & Bethany R. S. Fox & John C. Hellstrom & Marcus J. Vandergoes & Sebastian F. M. Breitenbach & Russell N Drysdale & Sebastian N. Höpker & Christopher T. Wood & Martin Schiller & Adam, 2024. "Warming drives dissolved organic carbon export from pristine alpine soils," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    19. Rui Yin & Wenkuan Qin & Xudong Wang & Dong Xie & Hao Wang & Hongyang Zhao & Zhenhua Zhang & Jin-Sheng He & Martin Schädler & Paul Kardol & Nico Eisenhauer & Biao Zhu, 2023. "Experimental warming causes mismatches in alpine plant-microbe-fauna phenology," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    20. Karis J. McFarlane & Daniela F. Cusack & Lee H. Dietterich & Alexandra L. Hedgpeth & Kari M. Finstad & Andrew T. Nottingham, 2024. "Experimental warming and drying increase older carbon contributions to soil respiration in lowland tropical forests," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:5:p:2903-:d:762409. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.