IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-55292-w.html
   My bibliography  Save this article

Stress granules sequester autophagy proteins to facilitate plant recovery from heat stress

Author

Listed:
  • Xibao Li

    (South China Normal University
    South China Normal University)

  • Jun Liao

    (South China Normal University
    South China Normal University)

  • Ka Kit Chung

    (The Chinese University of Hong Kong)

  • Lei Feng

    (South China Normal University
    South China Normal University)

  • Yanglan Liao

    (South China Normal University
    South China Normal University)

  • Zhixin Yang

    (South China Normal University
    South China Normal University)

  • Chuanliang Liu

    (South China Normal University
    South China Normal University)

  • Jun Zhou

    (South China Normal University
    South China Normal University)

  • Wenjin Shen

    (South China Normal University
    South China Normal University)

  • Hongbo Li

    (South China Normal University
    South China Normal University)

  • Chengwei Yang

    (South China Normal University
    South China Normal University)

  • Xiaohong Zhuang

    (The Chinese University of Hong Kong)

  • Caiji Gao

    (South China Normal University
    South China Normal University)

Abstract

The autophagy pathway regulates the degradation of misfolded proteins caused by heat stress (HS) in the cytoplasm, thereby maintaining cellular homeostasis. Although previous studies have established that autophagy (ATG) genes are transcriptionally upregulated in response to HS, the precise regulation of ATG proteins at the subcellular level remains poorly understood. In this study, we provide compelling evidence for the translocation of key autophagy components, including the ATG1/ATG13 kinase complex (ATG1a, ATG13a), PI3K complex (ATG6, VPS34), and ATG8-PE system (ATG5), to HS-induced stress granules (SGs) in Arabidopsis thaliana. As HS subsides, SGs disassemble, leading to the re-translocation of ATG proteins back to the cytoplasm, thereby facilitating the rapid activation of autophagy to degrade HS-induced ubiquitinated aggregates. Notably, autophagy activation is delayed in the SG-deficient (ubp1abc) mutants during the HS recovery phase, resulting in an insufficient clearance of ubiquitinated insoluble proteins that arise due to HS. Collectively, this study uncovers a previously unknown function of SGs in regulating autophagy as a temporary repository for ATG proteins under HS and provides valuable insights into the cellular mechanisms that maintain protein homeostasis during stress.

Suggested Citation

  • Xibao Li & Jun Liao & Ka Kit Chung & Lei Feng & Yanglan Liao & Zhixin Yang & Chuanliang Liu & Jun Zhou & Wenjin Shen & Hongbo Li & Chengwei Yang & Xiaohong Zhuang & Caiji Gao, 2024. "Stress granules sequester autophagy proteins to facilitate plant recovery from heat stress," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-55292-w
    DOI: 10.1038/s41467-024-55292-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-55292-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-55292-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xuezhao Feng & Daxiao Sun & Yanchang Li & Jinpei Zhang & Shiyu Liu & Dachuan Zhang & Jingxiang Zheng & Qing Xi & Haisha Liang & Wenkang Zhao & Ying Li & Mengbo Xu & Jiayu He & Tong Liu & Ayshamgul Has, 2023. "Local membrane source gathering by p62 body drives autophagosome formation," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Maneka Chitiprolu & Chantal Jagow & Veronique Tremblay & Emma Bondy-Chorney & Geneviève Paris & Alexandre Savard & Gareth Palidwor & Francesca A. Barry & Lorne Zinman & Julia Keith & Ekaterina Rogaeva, 2018. "A complex of C9ORF72 and p62 uses arginine methylation to eliminate stress granules by autophagy," Nature Communications, Nature, vol. 9(1), pages 1-18, December.
    3. Huaijun Wang & Tiantian Ye & Zilong Guo & Yilong Yao & Haifu Tu & Pengfei Wang & Yu Zhang & Yao Wang & Xiaokai Li & Bingchen Li & Haiyan Xiong & Xuelei Lai & Lizhong Xiong, 2024. "A double-stranded RNA binding protein enhances drought resistance via protein phase separation in rice," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    4. Yuko Fujioka & Jahangir Md. Alam & Daisuke Noshiro & Kazunari Mouri & Toshio Ando & Yasushi Okada & Alexander I. May & Roland L. Knorr & Kuninori Suzuki & Yoshinori Ohsumi & Nobuo N. Noda, 2020. "Phase separation organizes the site of autophagosome formation," Nature, Nature, vol. 578(7794), pages 301-305, February.
    5. Huaijun Wang & Tiantian Ye & Zilong Guo & Yilong Yao & Haifu Tu & Pengfei Wang & Yu Zhang & Yao Wang & Xiaokai Li & Bingchen Li & Haiyan Xiong & Xuelei Lai & Lizhong Xiong, 2024. "Author Correction: A double-stranded RNA binding protein enhances drought resistance via protein phase separation in rice," Nature Communications, Nature, vol. 15(1), pages 1-1, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xin Meng & Guipeng Hu & Xiaomin Li & Cong Gao & Wei Song & Wanqing Wei & Jing Wu & Liming Liu, 2025. "A synthetic methylotroph achieves accelerated cell growth by alleviating transcription-replication conflicts," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
    2. Shuang-zhou Peng & Xiao-hui Chen & Si-jie Chen & Jie Zhang & Chuan-ying Wang & Wei-rong Liu & Duo Zhang & Ying Su & Xiao-kun Zhang, 2021. "Phase separation of Nur77 mediates celastrol-induced mitophagy by promoting the liquidity of p62/SQSTM1 condensates," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    3. Wenhao Li & Hongwei Zhu & Jinzhu Chen & Binglu Ru & Qin Peng & Jianqiang Miao & Xili Liu, 2024. "PsAF5 functions as an essential adapter for PsPHB2-mediated mitophagy under ROS stress in Phytophthora sojae," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    4. Lennart Enders & Marton Siklos & Jan Borggräfe & Stefan Gaussmann & Anna Koren & Monika Malik & Tatjana Tomek & Michael Schuster & Jiří Reiniš & Elisa Hahn & Andrea Rukavina & Andreas Reicher & Tamara, 2023. "Pharmacological perturbation of the phase-separating protein SMNDC1," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    5. Pureum Jeon & Hyun-Ji Ham & Haneul Choi & Semin Park & Jae-Woo Jang & Sang-Won Park & Dong-Hyung Cho & Hyun-Jeong Lee & Hyun Kyu Song & Masaaki Komatsu & Dohyun Han & Deok-Jin Jang & Jin-A Lee, 2024. "NS1 binding protein regulates stress granule dynamics and clearance by inhibiting p62 ubiquitination," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    6. Daniel Mann & Simon A. Fromm & Antonio Martinez-Sanchez & Navin Gopaldass & Ramona Choy & Andreas Mayer & Carsten Sachse, 2023. "Atg18 oligomer organization in assembled tubes and on lipid membrane scaffolds," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    7. Yong Ryoul Kim & Jaegeon Joo & Hee Jung Lee & Chaelim Kim & Ju-Chan Park & Young Suk Yu & Chang Rok Kim & Do Hui Lee & Joowon Cha & Hyemin Kwon & Kimberley M. Hanssen & Thomas G. P. Grünewald & Murim , 2024. "Prion-like domain mediated phase separation of ARID1A promotes oncogenic potential of Ewing’s sarcoma," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    8. David M. Hollenstein & Mariya Licheva & Nicole Konradi & David Schweida & Hector Mancilla & Muriel Mari & Fulvio Reggiori & Claudine Kraft, 2021. "Spatial control of avidity regulates initiation and progression of selective autophagy," Nature Communications, Nature, vol. 12(1), pages 1-18, December.
    9. Tao Wang & Xibin Tian & Han Byeol Kim & Yura Jang & Zhiyuan Huang & Chan Hyun Na & Jiou Wang, 2022. "Intracellular energy controls dynamics of stress-induced ribonucleoprotein granules," Nature Communications, Nature, vol. 13(1), pages 1-21, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-55292-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.