Autonomous self-healing supramolecular polymer transistors for skin electronics
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-024-47718-2
Download full text from publisher
References listed on IDEAS
- Jin Young Oh & Simon Rondeau-Gagné & Yu-Cheng Chiu & Alex Chortos & Franziska Lissel & Ging-Ji Nathan Wang & Bob C. Schroeder & Tadanori Kurosawa & Jeffrey Lopez & Toru Katsumata & Jie Xu & Chenxin Zh, 2016. "Intrinsically stretchable and healable semiconducting polymer for organic transistors," Nature, Nature, vol. 539(7629), pages 411-415, November.
- Siegfried Bauer & Martin Kaltenbrunner, 2016. "Semiconductors that stretch and heal," Nature, Nature, vol. 539(7629), pages 365-367, November.
- Jinhong Park & Duhwan Seong & Yong Jun Park & Sang Hyeok Park & Hyunjin Jung & Yewon Kim & Hyoung Won Baac & Mikyung Shin & Seunghyun Lee & Minbaek Lee & Donghee Son, 2022. "Reversible electrical percolation in a stretchable and self-healable silver-gradient nanocomposite bilayer," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
- Kaushik Parida & Gurunathan Thangavel & Guofa Cai & Xinran Zhou & Sangbaek Park & Jiaqing Xiong & Pooi See Lee, 2019. "Extremely stretchable and self-healing conductor based on thermoplastic elastomer for all-three-dimensional printed triboelectric nanogenerator," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
- Daewoo Suh & K. P. Faseela & Wonjoon Kim & Chanyong Park & Jang Gyun Lim & Sungwon Seo & Moon Ki Kim & Hyungpil Moon & Seunghyun Baik, 2020. "Electron tunneling of hierarchically structured silver nanosatellite particles for highly conductive healable nanocomposites," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yangshuang Bian & Mingliang Zhu & Chengyu Wang & Kai Liu & Wenkang Shi & Zhiheng Zhu & Mingcong Qin & Fan Zhang & Zhiyuan Zhao & Hanlin Wang & Yunqi Liu & Yunlong Guo, 2024. "A detachable interface for stable low-voltage stretchable transistor arrays and high-resolution X-ray imaging," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
- Patnam, Harishkumarreddy & Dudem, Bhaskar & Graham, Sontyana Adonijah & Yu, Jae Su, 2021. "High-performance and robust triboelectric nanogenerators based on optimal microstructured poly(vinyl alcohol) and poly(vinylidene fluoride) polymers for self-powered electronic applications," Energy, Elsevier, vol. 223(C).
- Beibei Shao & Ming-Han Lu & Tai-Chen Wu & Wei-Chen Peng & Tien-Yu Ko & Yung-Chi Hsiao & Jiann-Yeu Chen & Baoquan Sun & Ruiyuan Liu & Ying-Chih Lai, 2024. "Large-area, untethered, metamorphic, and omnidirectionally stretchable multiplexing self-powered triboelectric skins," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
- Liqing Ai & Weikang Lin & Chunyan Cao & Pengyu Li & Xuejiao Wang & Dong Lv & Xin Li & Zhengbao Yang & Xi Yao, 2023. "Tough soldering for stretchable electronics by small-molecule modulated interfacial assemblies," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
- Danlei Zhu & Wei Jiang & Zetong Ma & Jiajing Feng & Xiuqin Zhan & Cheng Lu & Jie Liu & Jie Liu & Yuanyuan Hu & Dong Wang & Yong Sheng Zhao & Jianpu Wang & Zhaohui Wang & Lang Jiang, 2022. "Organic donor-acceptor heterojunctions for high performance circularly polarized light detection," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
- Yangshuang Bian & Kai Liu & Yang Ran & Yi Li & Yuanhong Gao & Zhiyuan Zhao & Mingchao Shao & Yanwei Liu & Junhua Kuang & Zhiheng Zhu & Mingcong Qin & Zhichao Pan & Mingliang Zhu & Chenyu Wang & Hu Che, 2022. "Spatially nanoconfined N-type polymer semiconductors for stretchable ultrasensitive X-ray detection," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
- Zhiqiang Gao & Tian-Ran Wei & Tingting Deng & Pengfei Qiu & Wei Xu & Yuecun Wang & Lidong Chen & Xun Shi, 2022. "High-throughput screening of 2D van der Waals crystals with plastic deformability," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
- Jinhong Park & Duhwan Seong & Yong Jun Park & Sang Hyeok Park & Hyunjin Jung & Yewon Kim & Hyoung Won Baac & Mikyung Shin & Seunghyun Lee & Minbaek Lee & Donghee Son, 2022. "Reversible electrical percolation in a stretchable and self-healable silver-gradient nanocomposite bilayer," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
- Liang Yue & S. Macrae Montgomery & Xiaohao Sun & Luxia Yu & Yuyang Song & Tsuyoshi Nomura & Masato Tanaka & H. Jerry Qi, 2023. "Single-vat single-cure grayscale digital light processing 3D printing of materials with large property difference and high stretchability," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
- Jian Lv & Gurunathan Thangavel & Yangyang Xin & Dace Gao & Wei Church Poh & Shaohua Chen & Pooi See Lee, 2023. "Printed sustainable elastomeric conductor for soft electronics," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
- Seung-Han Kang & Jeong-Wan Jo & Jong Min Lee & Sanghee Moon & Seung Bum Shin & Su Bin Choi & Donghwan Byeon & Jaehyun Kim & Myung-Gil Kim & Yong-Hoon Kim & Jong-Woong Kim & Sung Kyu Park, 2024. "Full integration of highly stretchable inorganic transistors and circuits within molecular-tailored elastic substrates on a large scale," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
- Lin-Yong Xu & Wei Wang & Xinrong Yang & Shanshan Wang & Yiming Shao & Mingxia Chen & Rui Sun & Jie Min, 2024. "Real-time monitoring polymerization degree of organic photovoltaic materials toward no batch-to-batch variations in device performance," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
- Yuchen Qiu & Bo Zhang & Junchuan Yang & Hanfei Gao & Shuang Li & Le Wang & Penghua Wu & Yewang Su & Yan Zhao & Jiangang Feng & Lei Jiang & Yuchen Wu, 2021. "Wafer-scale integration of stretchable semiconducting polymer microstructures via capillary gradient," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47718-2. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.