IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-15709-8.html
   My bibliography  Save this article

Electron tunneling of hierarchically structured silver nanosatellite particles for highly conductive healable nanocomposites

Author

Listed:
  • Daewoo Suh

    (Sungkyunkwan University
    Production Engineering Research Institute, LG Electronics)

  • K. P. Faseela

    (Sungkyunkwan University)

  • Wonjoon Kim

    (Sungkyunkwan University)

  • Chanyong Park

    (Sungkyunkwan University)

  • Jang Gyun Lim

    (Sungkyunkwan University)

  • Sungwon Seo

    (Sungkyunkwan University)

  • Moon Ki Kim

    (Sungkyunkwan University
    Sungkyunkwan University)

  • Hyungpil Moon

    (Sungkyunkwan University)

  • Seunghyun Baik

    (Sungkyunkwan University)

Abstract

Healable conductive materials have received considerable attention. However, their practical applications are impeded by low electrical conductivity and irreversible degradation after breaking/healing cycles. Here we report a highly conductive completely reversible electron tunneling-assisted percolation network of silver nanosatellite particles for putty-like moldable and healable nanocomposites. The densely and uniformly distributed silver nanosatellite particles with a bimodal size distribution are generated by the radical and reactive oxygen species-mediated vigorous etching and reduction reaction of silver flakes using tetrahydrofuran peroxide in a silicone rubber matrix. The close work function match between silicone and silver enables electron tunneling between nanosatellite particles, increasing electrical conductivity by ~5 orders of magnitude (1.02×103 Scm−1) without coalescence of fillers. This results in ~100% electrical healing efficiency after 1000 breaking/healing cycles and stability under water immersion and 6-month exposure to ambient air. The highly conductive moldable nanocomposite may find applications in improvising and healing electrical parts.

Suggested Citation

  • Daewoo Suh & K. P. Faseela & Wonjoon Kim & Chanyong Park & Jang Gyun Lim & Sungwon Seo & Moon Ki Kim & Hyungpil Moon & Seunghyun Baik, 2020. "Electron tunneling of hierarchically structured silver nanosatellite particles for highly conductive healable nanocomposites," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-15709-8
    DOI: 10.1038/s41467-020-15709-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-15709-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-15709-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ngoc Thanh Phuong Vo & Tae Uk Nam & Min Woo Jeong & Jun Su Kim & Kyu Ho Jung & Yeongjun Lee & Guorong Ma & Xiaodan Gu & Jeffrey B.-H. Tok & Tae Il Lee & Zhenan Bao & Jin Young Oh, 2024. "Autonomous self-healing supramolecular polymer transistors for skin electronics," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Jinhong Park & Duhwan Seong & Yong Jun Park & Sang Hyeok Park & Hyunjin Jung & Yewon Kim & Hyoung Won Baac & Mikyung Shin & Seunghyun Lee & Minbaek Lee & Donghee Son, 2022. "Reversible electrical percolation in a stretchable and self-healable silver-gradient nanocomposite bilayer," Nature Communications, Nature, vol. 13(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-15709-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.