IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v533y2016i7601d10.1038_nature17936.html
   My bibliography  Save this article

Principles underlying sensory map topography in primary visual cortex

Author

Listed:
  • Jens Kremkow

    (Graduate Center for Vision Research, State University of New York, College of Optometry
    † Present address: Department of Biology, Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Philippstrasse 13, 10115 Berlin, Germany.)

  • Jianzhong Jin

    (Graduate Center for Vision Research, State University of New York, College of Optometry)

  • Yushi Wang

    (Graduate Center for Vision Research, State University of New York, College of Optometry)

  • Jose M. Alonso

    (Graduate Center for Vision Research, State University of New York, College of Optometry)

Abstract

The primary visual cortex contains a detailed map of the visual scene, which is represented according to multiple stimulus dimensions including spatial location, ocular dominance and stimulus orientation. The maps for spatial location and ocular dominance arise from the spatial arrangement of thalamic afferent axons in the cortex. However, the origins of the other maps remain unclear. Here we show that the cortical maps for orientation, direction and retinal disparity in the cat (Felis catus) are all strongly related to the organization of the map for spatial location of light (ON) and dark (OFF) stimuli, an organization that we show is OFF-dominated, OFF-centric and runs orthogonal to ocular dominance columns. Because this ON–OFF organization originates from the clustering of ON and OFF thalamic afferents in the visual cortex, we conclude that all main features of visual cortical topography, including orientation, direction and retinal disparity, follow a common organizing principle that arranges thalamic axons with similar retinotopy and ON–OFF polarity in neighbouring cortical regions.

Suggested Citation

  • Jens Kremkow & Jianzhong Jin & Yushi Wang & Jose M. Alonso, 2016. "Principles underlying sensory map topography in primary visual cortex," Nature, Nature, vol. 533(7601), pages 52-57, May.
  • Handle: RePEc:nat:nature:v:533:y:2016:i:7601:d:10.1038_nature17936
    DOI: 10.1038/nature17936
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature17936
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature17936?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elaine Tring & Konnie K. Duan & Dario L. Ringach, 2022. "ON/OFF domains shape receptive field structure in mouse visual cortex," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Sohrab Najafian & Erin Koch & Kai Lun Teh & Jianzhong Jin & Hamed Rahimi-Nasrabadi & Qasim Zaidi & Jens Kremkow & Jose-Manuel Alonso, 2022. "A theory of cortical map formation in the visual brain," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    3. Yajie Liang & Rongwen Lu & Katharine Borges & Na Ji, 2023. "Stimulus edges induce orientation tuning in superior colliculus," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    4. Jérémie Sibille & Carolin Gehr & Jonathan I. Benichov & Hymavathy Balasubramanian & Kai Lun Teh & Tatiana Lupashina & Daniela Vallentin & Jens Kremkow, 2022. "High-density electrode recordings reveal strong and specific connections between retinal ganglion cells and midbrain neurons," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    5. Tian Wang & Weifeng Dai & Yujie Wu & Yang Li & Yi Yang & Yange Zhang & Tingting Zhou & Xiaowen Sun & Gang Wang & Liang Li & Fei Dou & Dajun Xing, 2024. "Nonuniform and pathway-specific laminar processing of spatial frequencies in the primary visual cortex of primates," Nature Communications, Nature, vol. 15(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:533:y:2016:i:7601:d:10.1038_nature17936. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.