IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-32721-2.html
   My bibliography  Save this article

Circularly polarized light-sensitive, hot electron transistor with chiral plasmonic nanoparticles

Author

Listed:
  • Seok Daniel Namgung

    (Seoul National University
    Seoul National University)

  • Ryeong Myeong Kim

    (Seoul National University)

  • Yae-Chan Lim

    (Seoul National University)

  • Jong Woo Lee

    (Seoul National University)

  • Nam Heon Cho

    (Seoul National University)

  • Hyeohn Kim

    (Seoul National University)

  • Jin-Suk Huh

    (Seoul National University
    Seoul National University)

  • Hanju Rhee

    (Korea Basic Science Institute)

  • Sanghee Nah

    (Korea Basic Science Institute)

  • Min-Kyu Song

    (Yonsei University)

  • Jang-Yeon Kwon

    (Yonsei University)

  • Ki Tae Nam

    (Seoul National University
    Seoul National University)

Abstract

The quantitative detection of circularly polarized light (CPL) is necessary in next-generation optical communication carrying high-density information and in phase-controlled displays exhibiting volumetric imaging. In the current technology, multiple pixels of different wavelengths and polarizers are required, inevitably resulting in high loss and low detection efficiency. Here, we demonstrate a highly efficient CPL-detecting transistor composed of chiral plasmonic nanoparticles with a high Khun’s dissymmetry (g-factor) of 0.2 and a high mobility conducting oxide of InGaZnO. The device successfully distinguished the circular polarization state and displayed an unprecedented photoresponsivity of over 1 A/W under visible CPL excitation. This observation is mainly attributed to the hot electron generation in chiral plasmonic nanoparticles and to the effective collection of hot electrons in the oxide semiconducting transistor. Such characteristics further contribute to opto-neuromorphic operation and the artificial nervous system based on the device successfully performs image classification work. We anticipate that our strategy will aid in the rational design and fabrication of a high-performance CPL detector and opto-neuromorphic operation with a chiral plasmonic structure depending on the wavelength and circular polarization state.

Suggested Citation

  • Seok Daniel Namgung & Ryeong Myeong Kim & Yae-Chan Lim & Jong Woo Lee & Nam Heon Cho & Hyeohn Kim & Jin-Suk Huh & Hanju Rhee & Sanghee Nah & Min-Kyu Song & Jang-Yeon Kwon & Ki Tae Nam, 2022. "Circularly polarized light-sensitive, hot electron transistor with chiral plasmonic nanoparticles," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32721-2
    DOI: 10.1038/s41467-022-32721-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-32721-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-32721-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dandan Wen & Fuyong Yue & Guixin Li & Guoxing Zheng & Kinlong Chan & Shumei Chen & Ming Chen & King Fai Li & Polis Wing Han Wong & Kok Wai Cheah & Edwin Yue Bun Pun & Shuang Zhang & Xianzhong Chen, 2015. "Helicity multiplexed broadband metasurface holograms," Nature Communications, Nature, vol. 6(1), pages 1-7, November.
    2. Min-Kyu Song & Seok Daniel Namgung & Daehwan Choi & Hyeohn Kim & Hongmin Seo & Misong Ju & Yoon Ho Lee & Taehoon Sung & Yoon-Sik Lee & Ki Tae Nam & Jang-Yeon Kwon, 2020. "Proton-enabled activation of peptide materials for biological bimodal memory," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    3. Hye-Eun Lee & Hyo-Yong Ahn & Jungho Mun & Yoon Young Lee & Minkyung Kim & Nam Heon Cho & Kiseok Chang & Wook Sung Kim & Junsuk Rho & Ki Tae Nam, 2018. "Amino-acid- and peptide-directed synthesis of chiral plasmonic gold nanoparticles," Nature, Nature, vol. 556(7701), pages 360-365, April.
    4. Aude Lietard & Cho-Shuen Hsieh & Hanju Rhee & Minhaeng Cho, 2018. "Electron heating and thermal relaxation of gold nanorods revealed by two-dimensional electronic spectroscopy," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    5. Lukas Mennel & Joanna Symonowicz & Stefan Wachter & Dmitry K. Polyushkin & Aday J. Molina-Mendoza & Thomas Mueller, 2020. "Ultrafast machine vision with 2D material neural network image sensors," Nature, Nature, vol. 579(7797), pages 62-66, March.
    6. Yang Chai, 2020. "In-sensor computing for machine vision," Nature, Nature, vol. 579(7797), pages 32-33, March.
    7. A. V. Kimel & A. Kirilyuk & P. A. Usachev & R. V. Pisarev & A. M. Balbashov & Th. Rasing, 2005. "Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses," Nature, Nature, vol. 435(7042), pages 655-657, June.
    8. Wei Li & Zachary J. Coppens & Lucas V. Besteiro & Wenyi Wang & Alexander O. Govorov & Jason Valentine, 2015. "Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials," Nature Communications, Nature, vol. 6(1), pages 1-7, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qi Liu & Qi Wei & Hui Ren & Luwei Zhou & Yifan Zhou & Pengzhi Wang & Chenghao Wang & Jun Yin & Mingjie Li, 2023. "Circular polarization-resolved ultraviolet photonic artificial synapse based on chiral perovskite," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Yoon Ho Lee & Yousang Won & Jungho Mun & Sanghyuk Lee & Yeseul Kim & Bongjun Yeom & Letian Dou & Junsuk Rho & Joon Hak Oh, 2023. "Hierarchically manufactured chiral plasmonic nanostructures with gigantic chirality for polarized emission and information encryption," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tao Guo & Shasha Li & Y. Norman Zhou & Wei D. Lu & Yong Yan & Yimin A. Wu, 2024. "Interspecies-chimera machine vision with polarimetry for real-time navigation and anti-glare pattern recognition," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Yoon Ho Lee & Yousang Won & Jungho Mun & Sanghyuk Lee & Yeseul Kim & Bongjun Yeom & Letian Dou & Junsuk Rho & Joon Hak Oh, 2023. "Hierarchically manufactured chiral plasmonic nanostructures with gigantic chirality for polarized emission and information encryption," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Guangdong Zhou & Jie Li & Qunliang Song & Lidan Wang & Zhijun Ren & Bai Sun & Xiaofang Hu & Wenhua Wang & Gaobo Xu & Xiaodie Chen & Lan Cheng & Feichi Zhou & Shukai Duan, 2023. "Full hardware implementation of neuromorphic visual system based on multimodal optoelectronic resistive memory arrays for versatile image processing," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Boyuan Cui & Zhen Fan & Wenjie Li & Yihong Chen & Shuai Dong & Zhengwei Tan & Shengliang Cheng & Bobo Tian & Ruiqiang Tao & Guo Tian & Deyang Chen & Zhipeng Hou & Minghui Qin & Min Zeng & Xubing Lu & , 2022. "Ferroelectric photosensor network: an advanced hardware solution to real-time machine vision," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    5. Doeon Lee & Minseong Park & Yongmin Baek & Byungjoon Bae & Junseok Heo & Kyusang Lee, 2022. "In-sensor image memorization and encoding via optical neurons for bio-stimulus domain reduction toward visual cognitive processing," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    6. Yuyan Zhu & Yang Wang & Xingchen Pang & Yongbo Jiang & Xiaoxian Liu & Qing Li & Zhen Wang & Chunsen Liu & Weida Hu & Peng Zhou, 2024. "Non-volatile 2D MoS2/black phosphorus heterojunction photodiodes in the near- to mid-infrared region," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    7. Mingjin Dai & Chongwu Wang & Bo Qiang & Fakun Wang & Ming Ye & Song Han & Yu Luo & Qi Jie Wang, 2022. "On-chip mid-infrared photothermoelectric detectors for full-Stokes detection," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    8. Jiawei Lv & Jeong Hyun Han & Geonho Han & Seongmin An & Seung Ju Kim & Ryeong Myeong Kim & Jung‐El Ryu & Rena Oh & Hyuckjin Choi & In Han Ha & Yoon Ho Lee & Minje Kim & Gyeong-Su Park & Ho Won Jang & , 2024. "Spatiotemporally modulated full-polarized light emission for multiplexed optical encryption," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    9. Yan Sun & Shuting Xu & Zheqi Xu & Jiamin Tian & Mengmeng Bai & Zhiying Qi & Yue Niu & Hein Htet Aung & Xiaolu Xiong & Junfeng Han & Cuicui Lu & Jianbo Yin & Sheng Wang & Qing Chen & Reshef Tenne & All, 2022. "Mesoscopic sliding ferroelectricity enabled photovoltaic random access memory for material-level artificial vision system," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    10. Baofu Ding & Pengyuan Zeng & Ziyang Huang & Lixin Dai & Tianshu Lan & Hao Xu & Yikun Pan & Yuting Luo & Qiangmin Yu & Hui-Ming Cheng & Bilu Liu, 2022. "A 2D material–based transparent hydrogel with engineerable interference colours," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    11. Wenhao Ran & Zhihui Ren & Pan Wang & Yongxu Yan & Kai Zhao & Linlin Li & Zhexin Li & Lili Wang & Juehan Yang & Zhongming Wei & Zheng Lou & Guozhen Shen, 2021. "Integrated polarization-sensitive amplification system for digital information transmission," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    12. Maciej Da̧browski & Shi Guo & Mara Strungaru & Paul S. Keatley & Freddie Withers & Elton J. G. Santos & Robert J. Hicken, 2022. "All-optical control of spin in a 2D van der Waals magnet," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    13. Yao Ni & Jiaqi Liu & Hong Han & Qianbo Yu & Lu Yang & Zhipeng Xu & Chengpeng Jiang & Lu Liu & Wentao Xu, 2024. "Visualized in-sensor computing," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    14. Pei-Yu Huang & Bi-Yi Jiang & Hong-Ji Chen & Jia-Yi Xu & Kang Wang & Cheng-Yi Zhu & Xin-Yan Hu & Dong Li & Liang Zhen & Fei-Chi Zhou & Jing-Kai Qin & Cheng-Yan Xu, 2023. "Neuro-inspired optical sensor array for high-accuracy static image recognition and dynamic trace extraction," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    15. Ming Deng & Ziqing Li & Shiyuan Liu & Xiaosheng Fang & Limin Wu, 2024. "Wafer-scale integration of two-dimensional perovskite oxides towards motion recognition," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    16. Minju Song & Yoonkyum Kim & Du San Baek & Ho Young Kim & Da Hwi Gu & Haiyang Li & Benjamin V. Cunning & Seong Eun Yang & Seung Hwae Heo & Seunghyun Lee & Minhyuk Kim & June Sung Lim & Hu Young Jeong &, 2023. "3D microprinting of inorganic porous materials by chemical linking-induced solidification of nanocrystals," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    17. Chi Zhang & Huatian Hu & Chunmiao Ma & Yawen Li & Xujie Wang & Dongyao Li & Artur Movsesyan & Zhiming Wang & Alexander Govorov & Quan Gan & Tao Ding, 2024. "Quantum plasmonics pushes chiral sensing limit to single molecules: a paradigm for chiral biodetections," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    18. Jing Ai & Xueliang Zhang & Te Bai & Qing Shen & Peter Oleynikov & Yingying Duan & Osamu Terasaki & Shunai Che & Lu Han, 2022. "Synchronous quantitative analysis of chiral mesostructured inorganic crystals by 3D electron diffraction tomography," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    19. Junxiong Guo & Shuyi Gu & Lin Lin & Yu Liu & Ji Cai & Hongyi Cai & Yu Tian & Yuelin Zhang & Qinghua Zhang & Ze Liu & Yafei Zhang & Xiaosheng Zhang & Yuan Lin & Wen Huang & Lin Gu & Jinxing Zhang, 2024. "Type-printable photodetector arrays for multichannel meta-infrared imaging," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    20. Ling Li & Shasha Li & Wenhai Wang & Jielian Zhang & Yiming Sun & Qunrui Deng & Tao Zheng & Jianting Lu & Wei Gao & Mengmeng Yang & Hanyu Wang & Yuan Pan & Xueting Liu & Yani Yang & Jingbo Li & Nengjie, 2024. "Adaptative machine vision with microsecond-level accurate perception beyond human retina," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32721-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.