IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v6y2015i1d10.1038_ncomms9379.html
   My bibliography  Save this article

Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials

Author

Listed:
  • Wei Li

    (Vanderbilt University)

  • Zachary J. Coppens

    (Vanderbilt University)

  • Lucas V. Besteiro

    (Ohio University)

  • Wenyi Wang

    (Vanderbilt University)

  • Alexander O. Govorov

    (Ohio University)

  • Jason Valentine

    (Vanderbilt University)

Abstract

Circularly polarized light is utilized in various optical techniques and devices. However, using conventional optical systems to generate, analyse and detect circularly polarized light involves multiple optical elements, making it challenging to realize miniature and integrated devices. While a number of ultracompact optical elements for manipulating circularly polarized light have recently been demonstrated, the development of an efficient and highly selective circularly polarized light photodetector remains challenging. Here we report on an ultracompact circularly polarized light detector that combines large engineered chirality, realized using chiral plasmonic metamaterials, with hot electron injection. We demonstrate the detector’s ability to distinguish between left and right hand circularly polarized light without the use of additional optical elements. Implementation of this photodetector could lead to enhanced security in fibre and free-space communication, as well as emission, imaging and sensing applications for circularly polarized light using a highly integrated photonic platform.

Suggested Citation

  • Wei Li & Zachary J. Coppens & Lucas V. Besteiro & Wenyi Wang & Alexander O. Govorov & Jason Valentine, 2015. "Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials," Nature Communications, Nature, vol. 6(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms9379
    DOI: 10.1038/ncomms9379
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms9379
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms9379?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenhao Ran & Zhihui Ren & Pan Wang & Yongxu Yan & Kai Zhao & Linlin Li & Zhexin Li & Lili Wang & Juehan Yang & Zhongming Wei & Zheng Lou & Guozhen Shen, 2021. "Integrated polarization-sensitive amplification system for digital information transmission," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    2. Seok Daniel Namgung & Ryeong Myeong Kim & Yae-Chan Lim & Jong Woo Lee & Nam Heon Cho & Hyeohn Kim & Jin-Suk Huh & Hanju Rhee & Sanghee Nah & Min-Kyu Song & Jang-Yeon Kwon & Ki Tae Nam, 2022. "Circularly polarized light-sensitive, hot electron transistor with chiral plasmonic nanoparticles," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Mingjin Dai & Chongwu Wang & Bo Qiang & Fakun Wang & Ming Ye & Song Han & Yu Luo & Qi Jie Wang, 2022. "On-chip mid-infrared photothermoelectric detectors for full-Stokes detection," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Danlei Zhu & Wei Jiang & Zetong Ma & Jiajing Feng & Xiuqin Zhan & Cheng Lu & Jie Liu & Jie Liu & Yuanyuan Hu & Dong Wang & Yong Sheng Zhao & Jianpu Wang & Zhaohui Wang & Lang Jiang, 2022. "Organic donor-acceptor heterojunctions for high performance circularly polarized light detection," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    5. Yoon Ho Lee & Yousang Won & Jungho Mun & Sanghyuk Lee & Yeseul Kim & Bongjun Yeom & Letian Dou & Junsuk Rho & Joon Hak Oh, 2023. "Hierarchically manufactured chiral plasmonic nanostructures with gigantic chirality for polarized emission and information encryption," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms9379. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.