IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-32581-w.html
   My bibliography  Save this article

Introducing Brønsted acid sites to accelerate the bridging-oxygen-assisted deprotonation in acidic water oxidation

Author

Listed:
  • Yunzhou Wen

    (Fudan University)

  • Cheng Liu

    (Soochow University)

  • Rui Huang

    (Fudan University)

  • Hui Zhang

    (State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences)

  • Xiaobao Li

    (State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences)

  • F. Pelayo García de Arquer

    (ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology)

  • Zhi Liu

    (State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences
    ShanghaiTech University)

  • Youyong Li

    (Soochow University)

  • Bo Zhang

    (Fudan University)

Abstract

Oxygen evolution reaction (OER) consists of four sequential proton-coupled electron transfer steps, which suffer from sluggish kinetics even on state-of-the-art ruthenium dioxide (RuO2) catalysts. Understanding and controlling the proton transfer process could be an effective strategy to improve OER performances. Herein, we present a strategy to accelerate the deprotonation of OER intermediates by introducing strong Brønsted acid sites (e.g. tungsten oxides, WOx) into the RuO2. The Ru-W binary oxide is reported as a stable and active iridium-free acidic OER catalyst that exhibits a low overpotential (235 mV at 10 mA cm−2) and low degradation rate (0.014 mV h−1) over a 550-hour stability test. Electrochemical studies, in-situ near-ambient pressure X-ray photoelectron spectroscopy and density functional theory show that the W-O-Ru Brønsted acid sites are instrumental to facilitate proton transfer from the oxo-intermediate to the neighboring bridging oxygen sites, thus accelerating bridging-oxygen-assisted deprotonation OER steps in acidic electrolytes. The universality of the strategy is demonstrated for other Ru-M binary metal oxides (M = Cr, Mo, Nb, Ta, and Ti).

Suggested Citation

  • Yunzhou Wen & Cheng Liu & Rui Huang & Hui Zhang & Xiaobao Li & F. Pelayo García de Arquer & Zhi Liu & Youyong Li & Bo Zhang, 2022. "Introducing Brønsted acid sites to accelerate the bridging-oxygen-assisted deprotonation in acidic water oxidation," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32581-w
    DOI: 10.1038/s41467-022-32581-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-32581-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-32581-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hong Nhan Nong & Lorenz J. Falling & Arno Bergmann & Malte Klingenhof & Hoang Phi Tran & Camillo Spöri & Rik Mom & Janis Timoshenko & Guido Zichittella & Axel Knop-Gericke & Simone Piccinin & Javier P, 2020. "Key role of chemistry versus bias in electrocatalytic oxygen evolution," Nature, Nature, vol. 587(7834), pages 408-413, November.
    2. Qian Dang & Haiping Lin & Zhenglong Fan & Lu Ma & Qi Shao & Yujin Ji & Fangfang Zheng & Shize Geng & Shi-Ze Yang & Ningning Kong & Wenxiang Zhu & Youyong Li & Fan Liao & Xiaoqing Huang & Mingwang Shao, 2021. "Iridium metallene oxide for acidic oxygen evolution catalysis," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    3. Yi-Fan Huang & Patricia J. Kooyman & Marc T. M. Koper, 2016. "Intermediate stages of electrochemical oxidation of single-crystalline platinum revealed by in situ Raman spectroscopy," Nature Communications, Nature, vol. 7(1), pages 1-7, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu Shen & Xiao-Long Zhang & Ming-Rong Qu & Jie Ma & Sheng Zhu & Yu-Lin Min & Min-Rui Gao & Shu-Hong Yu, 2024. "Cr dopant mediates hydroxyl spillover on RuO2 for high-efficiency proton exchange membrane electrolysis," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Geng Zhang & Wei Guo & Hong Zheng & Xiang Li & Jinxin Wang & Qiuyu Zhang, 2024. "Identifying and tuning coordinated water molecules for efficient electrocatalytic water oxidation," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Yang Liu & Yixuan Wang & Hao Li & Min Gyu Kim & Ziyang Duan & Kainat Talat & Jin Yong Lee & Mingbo Wu & Hyoyoung Lee, 2025. "Effectiveness of strain and dopants on breaking the activity-stability trade-off of RuO2 acidic oxygen evolution electrocatalysts," Nature Communications, Nature, vol. 16(1), pages 1-12, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhaoping Shi & Ji Li & Yibo Wang & Shiwei Liu & Jianbing Zhu & Jiahao Yang & Xian Wang & Jing Ni & Zheng Jiang & Lijuan Zhang & Ying Wang & Changpeng Liu & Wei Xing & Junjie Ge, 2023. "Customized reaction route for ruthenium oxide towards stabilized water oxidation in high-performance PEM electrolyzers," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Inkyu Lee & Abhijith Surendran & Samantha Fleury & Ian Gimino & Alexander Curtiss & Cody Fell & Daniel J. Shiwarski & Omar Refy & Blaine Rothrock & Seonghan Jo & Tim Schwartzkopff & Abijeet Singh Meht, 2023. "Electrocatalytic on-site oxygenation for transplanted cell-based-therapies," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Shiyi Chen & Shishi Zhang & Lei Guo & Lun Pan & Chengxiang Shi & Xiangwen Zhang & Zhen-Feng Huang & Guidong Yang & Ji-Jun Zou, 2023. "Reconstructed Ir‒O‒Mo species with strong Brønsted acidity for acidic water oxidation," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    4. Benedikt Axel Brandes & Yogeshwaran Krishnan & Fabian Luca Buchauer & Heine Anton Hansen & Johan Hjelm, 2024. "Unifying the ORR and OER with surface oxygen and extracting their intrinsic activities on platinum," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    5. Wenxiang Zhu & Xiangcong Song & Fan Liao & Hui Huang & Qi Shao & Kun Feng & Yunjie Zhou & Mengjie Ma & Jie Wu & Hao Yang & Haiwei Yang & Meng Wang & Jie Shi & Jun Zhong & Tao Cheng & Mingwang Shao & Y, 2023. "Stable and oxidative charged Ru enhance the acidic oxygen evolution reaction activity in two-dimensional ruthenium-iridium oxide," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    6. Haoyin Zhong & Qi Zhang & Junchen Yu & Xin Zhang & Chao Wu & Hang An & Yifan Ma & Hao Wang & Jun Zhang & Yong-Wei Zhang & Caozheng Diao & Zhi Gen Yu & Shibo Xi & Xiaopeng Wang & Junmin Xue, 2023. "Key role of eg* band broadening in nickel-based oxyhydroxides on coupled oxygen evolution mechanism," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    7. Zeyu Wang & William A. Goddard & Hai Xiao, 2023. "Potential-dependent transition of reaction mechanisms for oxygen evolution on layered double hydroxides," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    8. Zhirong Zhang & Chuanyi Jia & Peiyu Ma & Chen Feng & Jin Yang & Junming Huang & Jiana Zheng & Ming Zuo & Mingkai Liu & Shiming Zhou & Jie Zeng, 2024. "Distance effect of single atoms on stability of cobalt oxide catalysts for acidic oxygen evolution," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    9. Kui Fan & Wenfu Xie & Jinze Li & Yining Sun & Pengcheng Xu & Yang Tang & Zhenhua Li & Mingfei Shao, 2022. "Active hydrogen boosts electrochemical nitrate reduction to ammonia," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    10. Carlos G. Rodellar & José M. Gisbert-Gonzalez & Francisco Sarabia & Beatriz Roldan Cuenya & Sebastian Z. Oener, 2024. "Ion solvation kinetics in bipolar membranes and at electrolyte–metal interfaces," Nature Energy, Nature, vol. 9(5), pages 548-558, May.
    11. Yixin Hao & Sung-Fu Hung & Luqi Wang & Liming Deng & Wen-Jing Zeng & Chenchen Zhang & Zih-Yi Lin & Chun-Han Kuo & Ye Wang & Ying Zhang & Han-Yi Chen & Feng Hu & Linlin Li & Shengjie Peng, 2024. "Designing neighboring-site activation of single atom via tunnel ions for boosting acidic oxygen evolution," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    12. Heng Zhu & Ximei Lv & Yuexu Wu & Wentao Wang & Yuping Wu & Shicheng Yan & Yuhui Chen, 2024. "Carbonate-carbonate coupling on platinum surface promotes electrochemical water oxidation to hydrogen peroxide," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    13. Lingxi Zhou & Yangfan Shao & Fang Yin & Jia Li & Feiyu Kang & Ruitao Lv, 2023. "Stabilizing non-iridium active sites by non-stoichiometric oxide for acidic water oxidation at high current density," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    14. Earl Matthew Davis & Arno Bergmann & Chao Zhan & Helmut Kuhlenbeck & Beatriz Roldan Cuenya, 2023. "Comparative study of Co3O4(111), CoFe2O4(111), and Fe3O4(111) thin film electrocatalysts for the oxygen evolution reaction," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    15. Qian Dang & Haiping Lin & Zhenglong Fan & Lu Ma & Qi Shao & Yujin Ji & Fangfang Zheng & Shize Geng & Shi-Ze Yang & Ningning Kong & Wenxiang Zhu & Youyong Li & Fan Liao & Xiaoqing Huang & Mingwang Shao, 2021. "Iridium metallene oxide for acidic oxygen evolution catalysis," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    16. Xiao Ren & Tianze Wu & Zizhao Gong & Lulu Pan & Jianling Meng & Haitao Yang & Freyja Bjork Dagbjartsdottir & Adrian Fisher & Hong-Jun Gao & Zhichuan J. Xu, 2023. "The origin of magnetization-caused increment in water oxidation," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    17. Yanfeng Shi & Lupeng Wang & Miao Liu & Zuozheng Xu & Peilin Huang & Lizhe Liu & Yuanhong Xu, 2025. "Electron–phonon coupling and coherent energy superposition induce spin-sensitive orbital degeneracy for enhanced acidic water oxidation," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    18. Yufei Zhao & Priyank V. Kumar & Xin Tan & Xinxin Lu & Xiaofeng Zhu & Junjie Jiang & Jian Pan & Shibo Xi & Hui Ying Yang & Zhipeng Ma & Tao Wan & Dewei Chu & Wenjie Jiang & Sean C. Smith & Rose Amal & , 2022. "Modulating Pt-O-Pt atomic clusters with isolated cobalt atoms for enhanced hydrogen evolution catalysis," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    19. Fan Liao & Kui Yin & Yujin Ji & Wenxiang Zhu & Zhenglong Fan & Youyong Li & Jun Zhong & Mingwang Shao & Zhenhui Kang & Qi Shao, 2023. "Iridium oxide nanoribbons with metastable monoclinic phase for highly efficient electrocatalytic oxygen evolution," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    20. Muhammad Imran Abdullah & Yusheng Fang & Xiaobing Wu & Meiqi Hu & Jing Shao & Youkun Tao & Haijiang Wang, 2024. "Tackling activity-stability paradox of reconstructed NiIrOx electrocatalysts by bridged W-O moiety," Nature Communications, Nature, vol. 15(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32581-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.