IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v7y2016i1d10.1038_ncomms12440.html
   My bibliography  Save this article

Intermediate stages of electrochemical oxidation of single-crystalline platinum revealed by in situ Raman spectroscopy

Author

Listed:
  • Yi-Fan Huang

    (Leiden Institute of Chemistry, Leiden University)

  • Patricia J. Kooyman

    (ChemE, Faculty of Applied Sciences, Delft University of Technology
    University of Cape Town)

  • Marc T. M. Koper

    (Leiden Institute of Chemistry, Leiden University)

Abstract

Understanding the atomistic details of how platinum surfaces are oxidized under electrochemical conditions is of importance for many electrochemical devices such as fuel cells and electrolysers. Here we use in situ shell-isolated nanoparticle-enhanced Raman spectroscopy to identify the intermediate stages of the electrochemical oxidation of Pt(111) and Pt(100) single crystals in perchloric acid. Density functional theory calculations were carried out to assist in assigning the experimental Raman bands by simulating the vibrational frequencies of possible intermediates and products. The perchlorate anion is suggested to interact with hydroxyl phase formed on the surface. Peroxo-like and superoxo-like two-dimensional (2D) surface oxides and amorphous 3D α-PtO2 are sequentially formed during the anodic polarization. Our measurements elucidate the process of the electrochemical oxidation of platinum single crystals by providing evidence for the structure-sensitive formation of a 2D platinum-(su)peroxide phase. These results may contribute towards a fundamental understanding of the mechanism of degradation of platinum electrocatalysts.

Suggested Citation

  • Yi-Fan Huang & Patricia J. Kooyman & Marc T. M. Koper, 2016. "Intermediate stages of electrochemical oxidation of single-crystalline platinum revealed by in situ Raman spectroscopy," Nature Communications, Nature, vol. 7(1), pages 1-7, November.
  • Handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms12440
    DOI: 10.1038/ncomms12440
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms12440
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms12440?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rubén Rizo & Julia Fernández-Vidal & Laurence J. Hardwick & Gary A. Attard & Francisco J. Vidal-Iglesias & Victor Climent & Enrique Herrero & Juan M. Feliu, 2022. "Investigating the presence of adsorbed species on Pt steps at low potentials," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    2. Nannan Meng & Jiang Shao & Hongjiao Li & Yuting Wang & Xiaoli Fu & Cuibo Liu & Yifu Yu & Bin Zhang, 2022. "Electrosynthesis of formamide from methanol and ammonia under ambient conditions," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. Yunzhou Wen & Cheng Liu & Rui Huang & Hui Zhang & Xiaobao Li & F. Pelayo García de Arquer & Zhi Liu & Youyong Li & Bo Zhang, 2022. "Introducing Brønsted acid sites to accelerate the bridging-oxygen-assisted deprotonation in acidic water oxidation," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms12440. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.