IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-32370-5.html
   My bibliography  Save this article

Identification of a HTT-specific binding motif in DNAJB1 essential for suppression and disaggregation of HTT

Author

Listed:
  • S. M. Ayala Mariscal

    (Leibniz Research Institute for Molecular Pharmacology (FMP) im Forschungsverbund Berlin e.V. (FMP))

  • M. L. Pigazzini

    (Leibniz Research Institute for Molecular Pharmacology (FMP) im Forschungsverbund Berlin e.V. (FMP)
    Charité Universitätsmedizin Berlin)

  • Y. Richter

    (University of Bremen)

  • M. Özel

    (University of Bremen)

  • I. L. Grothaus

    (University of Bremen
    University of Bremen)

  • J. Protze

    (Leibniz Research Institute for Molecular Pharmacology (FMP) im Forschungsverbund Berlin e.V. (FMP))

  • K. Ziege

    (Leibniz Research Institute for Molecular Pharmacology (FMP) im Forschungsverbund Berlin e.V. (FMP))

  • M. Kulke

    (Michigan State University)

  • M. ElBediwi

    (University of Bremen)

  • J. V. Vermaas

    (Michigan State University)

  • L. Colombi Ciacchi

    (University of Bremen
    University of Bremen
    University of Bremen)

  • S. Köppen

    (University of Bremen
    University of Bremen)

  • F. Liu

    (Leibniz Research Institute for Molecular Pharmacology (FMP) im Forschungsverbund Berlin e.V. (FMP))

  • J. Kirstein

    (Leibniz Research Institute for Molecular Pharmacology (FMP) im Forschungsverbund Berlin e.V. (FMP)
    University of Bremen)

Abstract

Huntington’s disease is a neurodegenerative disease caused by an expanded polyQ stretch within Huntingtin (HTT) that renders the protein aggregation-prone, ultimately resulting in the formation of amyloid fibrils. A trimeric chaperone complex composed of Hsc70, DNAJB1 and Apg2 can suppress and reverse the aggregation of HTTExon1Q48. DNAJB1 is the rate-limiting chaperone and we have here identified and characterized the binding interface between DNAJB1 and HTTExon1Q48. DNAJB1 exhibits a HTT binding motif (HBM) in the hinge region between C-terminal domains (CTD) I and II and binds to the polyQ-adjacent proline rich domain (PRD) of soluble as well as aggregated HTT. The PRD of HTT represents an additional binding site for chaperones. Mutation of the highly conserved H244 of the HBM of DNAJB1 completely abrogates the suppression and disaggregation of HTT fibrils by the trimeric chaperone complex. Notably, this mutation does not affect the binding and remodeling of any other protein substrate, suggesting that the HBM of DNAJB1 is a specific interaction site for HTT. Overexpression of wt DNAJB1, but not of DNAJB1H244A can prevent the accumulation of HTTExon1Q97 aggregates in HEK293 cells, thus validating the biological significance of the HBM within DNAJB1.

Suggested Citation

  • S. M. Ayala Mariscal & M. L. Pigazzini & Y. Richter & M. Özel & I. L. Grothaus & J. Protze & K. Ziege & M. Kulke & M. ElBediwi & J. V. Vermaas & L. Colombi Ciacchi & S. Köppen & F. Liu & J. Kirstein, 2022. "Identification of a HTT-specific binding motif in DNAJB1 essential for suppression and disaggregation of HTT," Nature Communications, Nature, vol. 13(1), pages 1-25, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32370-5
    DOI: 10.1038/s41467-022-32370-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-32370-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-32370-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nadinath B. Nillegoda & Janine Kirstein & Anna Szlachcic & Mykhaylo Berynskyy & Antonia Stank & Florian Stengel & Kristin Arnsburg & Xuechao Gao & Annika Scior & Ruedi Aebersold & D. Lys Guilbride & R, 2015. "Crucial HSP70 co-chaperone complex unlocks metazoan protein disaggregation," Nature, Nature, vol. 524(7564), pages 247-251, August.
    2. Peter Eastman & Jason Swails & John D Chodera & Robert T McGibbon & Yutong Zhao & Kyle A Beauchamp & Lee-Ping Wang & Andrew C Simmonett & Matthew P Harrigan & Chaya D Stern & Rafal P Wiewiora & Bernar, 2017. "OpenMM 7: Rapid development of high performance algorithms for molecular dynamics," PLOS Computational Biology, Public Library of Science, vol. 13(7), pages 1-17, July.
    3. Matthias M. Schneider & Saurabh Gautam & Therese W. Herling & Ewa Andrzejewska & Georg Krainer & Alyssa M. Miller & Victoria A. Trinkaus & Quentin A. E. Peter & Francesco Simone Ruggeri & Michele Vend, 2021. "The Hsc70 disaggregation machinery removes monomer units directly from α-synuclein fibril ends," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    4. Fan Liu & Philip Lössl & Richard Scheltema & Rosa Viner & Albert J. R. Heck, 2017. "Optimized fragmentation schemes and data analysis strategies for proteome-wide cross-link identification," Nature Communications, Nature, vol. 8(1), pages 1-8, August.
    5. Anne S. Wentink & Nadinath B. Nillegoda & Jennifer Feufel & Gabrielė Ubartaitė & Carolyn P. Schneider & Paolo De Los Rios & Janosch Hennig & Alessandro Barducci & Bernd Bukau, 2020. "Molecular dissection of amyloid disaggregation by human HSP70," Nature, Nature, vol. 587(7834), pages 483-488, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Meital Abayev-Avraham & Yehuda Salzberg & Dar Gliksberg & Meital Oren-Suissa & Rina Rosenzweig, 2023. "DNAJB6 mutants display toxic gain of function through unregulated interaction with Hsp70 chaperones," Nature Communications, Nature, vol. 14(1), pages 1-16, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Itika Saha & Patricia Yuste-Checa & Miguel Silva Padilha & Qiang Guo & Roman Körner & Hauke Holthusen & Victoria A. Trinkaus & Irina Dudanova & Rubén Fernández-Busnadiego & Wolfgang Baumeister & David, 2023. "The AAA+ chaperone VCP disaggregates Tau fibrils and generates aggregate seeds in a cellular system," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    2. Matthias M. Schneider & Saurabh Gautam & Therese W. Herling & Ewa Andrzejewska & Georg Krainer & Alyssa M. Miller & Victoria A. Trinkaus & Quentin A. E. Peter & Francesco Simone Ruggeri & Michele Vend, 2021. "The Hsc70 disaggregation machinery removes monomer units directly from α-synuclein fibril ends," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    3. Eduardo Pinho Melo & Tasuku Konno & Ilaria Farace & Mosab Ali Awadelkareem & Lise R. Skov & Fernando Teodoro & Teresa P. Sancho & Adrienne W. Paton & James C. Paton & Matthew Fares & Pedro M. R. Paulo, 2022. "Stress-induced protein disaggregation in the endoplasmic reticulum catalysed by BiP," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Jan Marten Schmidt & Ran Yang & Ashish Kumar & Olivia Hunker & Jan Seebacher & Franziska Bleichert, 2022. "A mechanism of origin licensing control through autoinhibition of S. cerevisiae ORC·DNA·Cdc6," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    5. Janni Harju & Muriel C. F. Teeseling & Chase P. Broedersz, 2024. "Loop-extruders alter bacterial chromosome topology to direct entropic forces for segregation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    6. Christian Hentrich & Mateusz Putyrski & Hanh Hanuschka & Waldemar Preis & Sarah-Jane Kellmann & Melissa Wich & Manuel Cavada & Sarah Hanselka & Victor S. Lelyveld & Francisco Ylera, 2024. "Engineered reversible inhibition of SpyCatcher reactivity enables rapid generation of bispecific antibodies," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    7. Jasjot Singh & Hadeer Elhabashy & Pathma Muthukottiappan & Markus Stepath & Martin Eisenacher & Oliver Kohlbacher & Volkmar Gieselmann & Dominic Winter, 2022. "Cross-linking of the endolysosomal system reveals potential flotillin structures and cargo," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    8. Tom Dixon & Derek MacPherson & Barmak Mostofian & Taras Dauzhenka & Samuel Lotz & Dwight McGee & Sharon Shechter & Utsab R. Shrestha & Rafal Wiewiora & Zachary A. McDargh & Fen Pei & Rajat Pal & João , 2022. "Predicting the structural basis of targeted protein degradation by integrating molecular dynamics simulations with structural mass spectrometry," Nature Communications, Nature, vol. 13(1), pages 1-24, December.
    9. Joseph G. Beton & Thomas Mulvaney & Tristan Cragnolini & Maya Topf, 2024. "Cryo-EM structure and B-factor refinement with ensemble representation," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    10. Andreas Mardt & Tim Hempel & Cecilia Clementi & Frank Noé, 2022. "Deep learning to decompose macromolecules into independent Markovian domains," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    11. Cheng Shen & Yuqing Zhang & Wenwen Cui & Yimeng Zhao & Danqi Sheng & Xinyu Teng & Miaoqing Shao & Muneyoshi Ichikawa & Jin Wang & Motoyuki Hattori, 2023. "Structural insights into the allosteric inhibition of P2X4 receptors," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    12. Re’em Moskovitz & Tossapol Pholcharee & Sophia M. DonVito & Bora Guloglu & Edward Lowe & Franziska Mohring & Robert W. Moon & Matthew K. Higgins, 2023. "Structural basis for DARC binding in reticulocyte invasion by Plasmodium vivax," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    13. David P. McDonogh & Julian D. Gale & Paolo Raiteri & Denis Gebauer, 2024. "Redefined ion association constants have consequences for calcium phosphate nucleation and biomineralization," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    14. F. P. Panei & P. Gkeka & M. Bonomi, 2024. "Identifying small-molecules binding sites in RNA conformational ensembles with SHAMAN," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    15. Zsolt Fazekas & Dóra K. Menyhárd & András Perczel, 2024. "LoCoHD: a metric for comparing local environments of proteins," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    16. Jaewoon Jung & Cheng Tan & Yuji Sugita, 2024. "GENESIS CGDYN: large-scale coarse-grained MD simulation with dynamic load balancing for heterogeneous biomolecular systems," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    17. Kristine F. R. Pobre-Piza & Melissa J. Mann & Ashley R. Flory & Linda M. Hendershot, 2022. "Mapping SP-C co-chaperone binding sites reveals molecular consequences of disease-causing mutations on protein maturation," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    18. Amy Rice & Sourav Haldar & Eric Wang & Paul S. Blank & Sergey A. Akimov & Timur R. Galimzyanov & Richard W. Pastor & Joshua Zimmerberg, 2022. "Planar aggregation of the influenza viral fusion peptide alters membrane structure and hydration, promoting poration," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    19. Dawei Sun & Yonglian Sun & Eric Janezic & Tricia Zhou & Matthew Johnson & Caleigh Azumaya & Sigrid Noreng & Cecilia Chiu & Akiko Seki & Teresita L. Arenzana & John M. Nicoludis & Yongchang Shi & Baome, 2023. "Structural basis of antibody inhibition and chemokine activation of the human CC chemokine receptor 8," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    20. Manuel Matzinger & Adrian Vasiu & Mathias Madalinski & Fränze Müller & Florian Stanek & Karl Mechtler, 2022. "Mimicked synthetic ribosomal protein complex for benchmarking crosslinking mass spectrometry workflows," Nature Communications, Nature, vol. 13(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32370-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.