Crucial HSP70 co-chaperone complex unlocks metazoan protein disaggregation
Author
Abstract
Suggested Citation
DOI: 10.1038/nature14884
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Eduardo Pinho Melo & Tasuku Konno & Ilaria Farace & Mosab Ali Awadelkareem & Lise R. Skov & Fernando Teodoro & Teresa P. Sancho & Adrienne W. Paton & James C. Paton & Matthew Fares & Pedro M. R. Paulo, 2022. "Stress-induced protein disaggregation in the endoplasmic reticulum catalysed by BiP," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
- Kristine F. R. Pobre-Piza & Melissa J. Mann & Ashley R. Flory & Linda M. Hendershot, 2022. "Mapping SP-C co-chaperone binding sites reveals molecular consequences of disease-causing mutations on protein maturation," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
- Dezerae Cox & Ching-Seng Ang & Nadinath B. Nillegoda & Gavin E. Reid & Danny M. Hatters, 2022. "Hidden information on protein function in censuses of proteome foldedness," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
- S. M. Ayala Mariscal & M. L. Pigazzini & Y. Richter & M. Özel & I. L. Grothaus & J. Protze & K. Ziege & M. Kulke & M. ElBediwi & J. V. Vermaas & L. Colombi Ciacchi & S. Köppen & F. Liu & J. Kirstein, 2022. "Identification of a HTT-specific binding motif in DNAJB1 essential for suppression and disaggregation of HTT," Nature Communications, Nature, vol. 13(1), pages 1-25, December.
- Lorea Velasco-Carneros & Jorge Cuéllar & Leire Dublang & César Santiago & Jean-Didier Maréchal & Jaime Martín-Benito & Moisés Maestro & José Ángel Fernández-Higuero & Natalia Orozco & Fernando Moro & , 2023. "The self-association equilibrium of DNAJA2 regulates its interaction with unfolded substrate proteins and with Hsc70," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
- Matthias M. Schneider & Saurabh Gautam & Therese W. Herling & Ewa Andrzejewska & Georg Krainer & Alyssa M. Miller & Victoria A. Trinkaus & Quentin A. E. Peter & Francesco Simone Ruggeri & Michele Vend, 2021. "The Hsc70 disaggregation machinery removes monomer units directly from α-synuclein fibril ends," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
- Sheng Chen & Anuradhika Puri & Braxton Bell & Joseph Fritsche & Hector H. Palacios & Maurie Balch & Macy L. Sprunger & Matthew K. Howard & Jeremy J. Ryan & Jessica N. Haines & Gary J. Patti & Albert A, 2024. "HTRA1 disaggregates α-synuclein amyloid fibrils and converts them into non-toxic and seeding incompetent species," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:524:y:2015:i:7564:d:10.1038_nature14884. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.