IDEAS home Printed from https://ideas.repec.org/a/plo/pbio00/3000919.html
   My bibliography  Save this article

Design of novel granulopoietic proteins by topological rescaffolding

Author

Listed:
  • Birte Hernandez Alvarez
  • Julia Skokowa
  • Murray Coles
  • Perihan Mir
  • Masoud Nasri
  • Kateryna Maksymenko
  • Laura Weidmann
  • Katherine W Rogers
  • Karl Welte
  • Andrei N Lupas
  • Patrick Müller
  • Mohammad ElGamacy

Abstract

Computational protein design is rapidly becoming more powerful, and improving the accuracy of computational methods would greatly streamline protein engineering by eliminating the need for empirical optimization in the laboratory. In this work, we set out to design novel granulopoietic agents using a rescaffolding strategy with the goal of achieving simpler and more stable proteins. All of the 4 experimentally tested designs were folded, monomeric, and stable, while the 2 determined structures agreed with the design models within less than 2.5 Å. Despite the lack of significant topological or sequence similarity to their natural granulopoietic counterpart, 2 designs bound to the granulocyte colony-stimulating factor (G-CSF) receptor and exhibited potent, but delayed, in vitro proliferative activity in a G-CSF-dependent cell line. Interestingly, the designs also induced proliferation and differentiation of primary human hematopoietic stem cells into mature granulocytes, highlighting the utility of our approach to develop highly active therapeutic leads purely based on computational design.De novo designed cytokines that activate the G-CSF receptor show that the receptor-binding information can be encoded onto stable, miniaturised protein scaffolds that possess potent granulopoietic activity; such novel proteins provide for ideal candidates for protein-based therapeutics.

Suggested Citation

  • Birte Hernandez Alvarez & Julia Skokowa & Murray Coles & Perihan Mir & Masoud Nasri & Kateryna Maksymenko & Laura Weidmann & Katherine W Rogers & Karl Welte & Andrei N Lupas & Patrick Müller & Mohamma, 2020. "Design of novel granulopoietic proteins by topological rescaffolding," PLOS Biology, Public Library of Science, vol. 18(12), pages 1-26, December.
  • Handle: RePEc:plo:pbio00:3000919
    DOI: 10.1371/journal.pbio.3000919
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3000919
    Download Restriction: no

    File URL: https://journals.plos.org/plosbiology/article/file?id=10.1371/journal.pbio.3000919&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pbio.3000919?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Masaharu Aritomi & Naoki Kunishima & Tomoyuki Okamoto & Ryota Kuroki & Yoshimi Ota & Kosuke Morikawa, 1999. "Atomic structure of the GCSF–receptor complex showing a new cytokine–receptor recognition scheme," Nature, Nature, vol. 401(6754), pages 713-717, October.
    2. Sarel J Fleishman & Andrew Leaver-Fay & Jacob E Corn & Eva-Maria Strauch & Sagar D Khare & Nobuyasu Koga & Justin Ashworth & Paul Murphy & Florian Richter & Gordon Lemmon & Jens Meiler & David Baker, 2011. "RosettaScripts: A Scripting Language Interface to the Rosetta Macromolecular Modeling Suite," PLOS ONE, Public Library of Science, vol. 6(6), pages 1-10, June.
    3. Rashid S. Syed & Scott W. Reid & Cuiwei Li & Janet C. Cheetham & Kenneth H. Aoki & Beishan Liu & Hangjun Zhan & Timothy D. Osslund & Arthur J. Chirino & Jiandong Zhang & Janet Finer-Moore & Steven Ell, 1998. "Efficiency of signalling through cytokine receptors depends critically on receptor orientation," Nature, Nature, vol. 395(6701), pages 511-516, October.
    4. Peter Eastman & Jason Swails & John D Chodera & Robert T McGibbon & Yutong Zhao & Kyle A Beauchamp & Lee-Ping Wang & Andrew C Simmonett & Matthew P Harrigan & Chaya D Stern & Rafal P Wiewiora & Bernar, 2017. "OpenMM 7: Rapid development of high performance algorithms for molecular dynamics," PLOS Computational Biology, Public Library of Science, vol. 13(7), pages 1-17, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Julia Skokowa & Birte Hernandez Alvarez & Murray Coles & Malte Ritter & Masoud Nasri & Jérémy Haaf & Narges Aghaallaei & Yun Xu & Perihan Mir & Ann-Christin Krahl & Katherine W. Rogers & Kateryna Maks, 2022. "A topological refactoring design strategy yields highly stable granulopoietic proteins," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    2. Janni Harju & Muriel C. F. Teeseling & Chase P. Broedersz, 2024. "Loop-extruders alter bacterial chromosome topology to direct entropic forces for segregation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Qiwen Su-Tobon & Jiayi Fan & Michael Goldstein & Kevin Feeney & Hongyuan Ren & Patrick Autissier & Peiyi Wang & Yingzi Huang & Udayan Mohanty & Jia Niu, 2025. "CRISPR-Hybrid: A CRISPR-Mediated Intracellular Directed Evolution Platform for RNA Aptamers," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    4. Daniel Ellis & Julia Lederhofer & Oliver J. Acton & Yaroslav Tsybovsky & Sally Kephart & Christina Yap & Rebecca A. Gillespie & Adrian Creanga & Audrey Olshefsky & Tyler Stephens & Deleah Pettie & Mic, 2022. "Structure-based design of stabilized recombinant influenza neuraminidase tetramers," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    5. Christian Hentrich & Mateusz Putyrski & Hanh Hanuschka & Waldemar Preis & Sarah-Jane Kellmann & Melissa Wich & Manuel Cavada & Sarah Hanselka & Victor S. Lelyveld & Francisco Ylera, 2024. "Engineered reversible inhibition of SpyCatcher reactivity enables rapid generation of bispecific antibodies," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    6. Thomas W. Linsky & Kyle Noble & Autumn R. Tobin & Rachel Crow & Lauren Carter & Jeffrey L. Urbauer & David Baker & Eva-Maria Strauch, 2022. "Sampling of structure and sequence space of small protein folds," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    7. Kaiseal T. G. Sarson-Lawrence & Joshua M. Hardy & Josephine Iaria & Dina Stockwell & Kira Behrens & Tamanna Saiyed & Cyrus Tan & Leila Jebeli & Nichollas E. Scott & Toby A. Dite & Nicos A. Nicola & An, 2024. "Cryo-EM structure of the extracellular domain of murine Thrombopoietin Receptor in complex with Thrombopoietin," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    8. Tom Dixon & Derek MacPherson & Barmak Mostofian & Taras Dauzhenka & Samuel Lotz & Dwight McGee & Sharon Shechter & Utsab R. Shrestha & Rafal Wiewiora & Zachary A. McDargh & Fen Pei & Rajat Pal & João , 2022. "Predicting the structural basis of targeted protein degradation by integrating molecular dynamics simulations with structural mass spectrometry," Nature Communications, Nature, vol. 13(1), pages 1-24, December.
    9. Joseph G. Beton & Thomas Mulvaney & Tristan Cragnolini & Maya Topf, 2024. "Cryo-EM structure and B-factor refinement with ensemble representation," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    10. Andreas Mardt & Tim Hempel & Cecilia Clementi & Frank Noé, 2022. "Deep learning to decompose macromolecules into independent Markovian domains," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    11. Cheng Shen & Yuqing Zhang & Wenwen Cui & Yimeng Zhao & Danqi Sheng & Xinyu Teng & Miaoqing Shao & Muneyoshi Ichikawa & Jin Wang & Motoyuki Hattori, 2023. "Structural insights into the allosteric inhibition of P2X4 receptors," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    12. Alexander M Sevy & Tim M Jacobs & James E Crowe Jr. & Jens Meiler, 2015. "Design of Protein Multi-specificity Using an Independent Sequence Search Reduces the Barrier to Low Energy Sequences," PLOS Computational Biology, Public Library of Science, vol. 11(7), pages 1-23, July.
    13. Re’em Moskovitz & Tossapol Pholcharee & Sophia M. DonVito & Bora Guloglu & Edward Lowe & Franziska Mohring & Robert W. Moon & Matthew K. Higgins, 2023. "Structural basis for DARC binding in reticulocyte invasion by Plasmodium vivax," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    14. David P. McDonogh & Julian D. Gale & Paolo Raiteri & Denis Gebauer, 2024. "Redefined ion association constants have consequences for calcium phosphate nucleation and biomineralization," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    15. Jonathan Yaacov Weinstein & Carlos Martí-Gómez & Rosalie Lipsh-Sokolik & Shlomo Yakir Hoch & Demian Liebermann & Reinat Nevo & Haim Weissman & Ekaterina Petrovich-Kopitman & David Margulies & Dmitry I, 2023. "Designed active-site library reveals thousands of functional GFP variants," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    16. F. P. Panei & P. Gkeka & M. Bonomi, 2024. "Identifying small-molecules binding sites in RNA conformational ensembles with SHAMAN," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    17. Jared Adolf-Bryfogle & Oleks Kalyuzhniy & Michael Kubitz & Brian D Weitzner & Xiaozhen Hu & Yumiko Adachi & William R Schief & Roland L Dunbrack Jr., 2018. "RosettaAntibodyDesign (RAbD): A general framework for computational antibody design," PLOS Computational Biology, Public Library of Science, vol. 14(4), pages 1-38, April.
    18. Vishruth Mullapudi & Jaime Vaquer-Alicea & Vaibhav Bommareddy & Anthony R. Vega & Bryan D. Ryder & Charles L. White & Marc. I. Diamond & Lukasz A. Joachimiak, 2023. "Network of hotspot interactions cluster tau amyloid folds," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    19. Zsolt Fazekas & Dóra K. Menyhárd & András Perczel, 2024. "LoCoHD: a metric for comparing local environments of proteins," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    20. Jaewoon Jung & Cheng Tan & Yuji Sugita, 2024. "GENESIS CGDYN: large-scale coarse-grained MD simulation with dynamic load balancing for heterogeneous biomolecular systems," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pbio00:3000919. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosbiology (email available below). General contact details of provider: https://journals.plos.org/plosbiology/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.