IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-31701-w.html
   My bibliography  Save this article

Mimicked synthetic ribosomal protein complex for benchmarking crosslinking mass spectrometry workflows

Author

Listed:
  • Manuel Matzinger

    (Vienna BioCenter (VBC))

  • Adrian Vasiu

    (Vienna BioCenter (VBC))

  • Mathias Madalinski

    (Vienna BioCenter (VBC))

  • Fränze Müller

    (Vienna BioCenter (VBC))

  • Florian Stanek

    (Vienna BioCenter (VBC))

  • Karl Mechtler

    (Vienna BioCenter (VBC)
    Vienna BioCenter (VBC))

Abstract

Cross-linking mass spectrometry has matured to a frequently used tool for the investigation of protein structures as well as interactome studies up to a system-wide level. The growing community generated a broad spectrum of applications, linker types, acquisition strategies and specialized data analysis tools, which makes it challenging to decide for an appropriate analysis workflow. Here, we report a large and flexible synthetic peptide library as reliable instrument to benchmark crosslink workflows. Additionally, we provide a tool, IMP-X-FDR, that calculates the real, experimentally validated, FDR, compares results across search engine platforms and analyses crosslink properties in an automated manner. We apply the library with 6 commonly used linker reagents and analyse the data with 6 established search engines. We thereby show that the correct algorithm and search setting choice is highly important to improve identification rate and reliability. We reach identification rates of up to ~70 % of the theoretical maximum (i.e. 700 unique lysine-lysine cross-links) while maintaining a real false-discovery-rate of

Suggested Citation

  • Manuel Matzinger & Adrian Vasiu & Mathias Madalinski & Fränze Müller & Florian Stanek & Karl Mechtler, 2022. "Mimicked synthetic ribosomal protein complex for benchmarking crosslinking mass spectrometry workflows," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31701-w
    DOI: 10.1038/s41467-022-31701-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-31701-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-31701-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Swantje Lenz & Ludwig R. Sinn & Francis J. O’Reilly & Lutz Fischer & Fritz Wegner & Juri Rappsilber, 2021. "Reliable identification of protein-protein interactions by crosslinking mass spectrometry," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    2. Rebecca Beveridge & Johannes Stadlmann & Josef M. Penninger & Karl Mechtler, 2020. "A synthetic peptide library for benchmarking crosslinking-mass spectrometry search engines for proteins and protein complexes," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    3. Fan Liu & Philip Lössl & Richard Scheltema & Rosa Viner & Albert J. R. Heck, 2017. "Optimized fragmentation schemes and data analysis strategies for proteome-wide cross-link identification," Nature Communications, Nature, vol. 8(1), pages 1-8, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jian-Hua Wang & Yu-Liang Tang & Zhou Gong & Rohit Jain & Fan Xiao & Yu Zhou & Dan Tan & Qiang Li & Niu Huang & Shu-Qun Liu & Keqiong Ye & Chun Tang & Meng-Qiu Dong & Xiaoguang Lei, 2022. "Characterization of protein unfolding by fast cross-linking mass spectrometry using di-ortho-phthalaldehyde cross-linkers," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    2. S. M. Ayala Mariscal & M. L. Pigazzini & Y. Richter & M. Özel & I. L. Grothaus & J. Protze & K. Ziege & M. Kulke & M. ElBediwi & J. V. Vermaas & L. Colombi Ciacchi & S. Köppen & F. Liu & J. Kirstein, 2022. "Identification of a HTT-specific binding motif in DNAJB1 essential for suppression and disaggregation of HTT," Nature Communications, Nature, vol. 13(1), pages 1-25, December.
    3. Hugo Gizardin-Fredon & Paulo E. Santo & Marie-Eve Chagot & Bruno Charpentier & Tiago M. Bandeiras & Xavier Manival & Oscar Hernandez-Alba & Sarah Cianférani, 2024. "Denaturing mass photometry for rapid optimization of chemical protein-protein cross-linking reactions," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    4. Jan Marten Schmidt & Ran Yang & Ashish Kumar & Olivia Hunker & Jan Seebacher & Franziska Bleichert, 2022. "A mechanism of origin licensing control through autoinhibition of S. cerevisiae ORC·DNA·Cdc6," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    5. Jasjot Singh & Hadeer Elhabashy & Pathma Muthukottiappan & Markus Stepath & Martin Eisenacher & Oliver Kohlbacher & Volkmar Gieselmann & Dominic Winter, 2022. "Cross-linking of the endolysosomal system reveals potential flotillin structures and cargo," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    6. Ying Zhu & Kerem Can Akkaya & Julia Ruta & Nanako Yokoyama & Cong Wang & Max Ruwolt & Diogo Borges Lima & Martin Lehmann & Fan Liu, 2024. "Cross-link assisted spatial proteomics to map sub-organelle proteomes and membrane protein topologies," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    7. Andrea Fossati & Deepto Mozumdar & Claire Kokontis & Melissa Mèndez-Moran & Eliza Nieweglowska & Adrian Pelin & Yuping Li & Baron Guo & Nevan J. Krogan & David A. Agard & Joseph Bondy-Denomy & Daniell, 2023. "Next-generation proteomics for quantitative Jumbophage-bacteria interaction mapping," Nature Communications, Nature, vol. 14(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31701-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.