IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-49638-7.html
   My bibliography  Save this article

Identifying small-molecules binding sites in RNA conformational ensembles with SHAMAN

Author

Listed:
  • F. P. Panei

    (Molecular Design Sciences, Sanofi
    Computational Structural Biology Unit
    Ecole Doctorale Complexité du Vivant)

  • P. Gkeka

    (Molecular Design Sciences, Sanofi)

  • M. Bonomi

    (Computational Structural Biology Unit)

Abstract

The rational targeting of RNA with small molecules is hampered by our still limited understanding of RNA structural and dynamic properties. Most in silico tools for binding site identification rely on static structures and therefore cannot face the challenges posed by the dynamic nature of RNA molecules. Here, we present SHAMAN, a computational technique to identify potential small-molecule binding sites in RNA structural ensembles. SHAMAN enables exploring the conformational landscape of RNA with atomistic molecular dynamics simulations and at the same time identifying RNA pockets in an efficient way with the aid of probes and enhanced-sampling techniques. In our benchmark composed of large, structured riboswitches as well as small, flexible viral RNAs, SHAMAN successfully identifies all the experimentally resolved pockets and ranks them among the most favorite probe hotspots. Overall, SHAMAN sets a solid foundation for future drug design efforts targeting RNA with small molecules, effectively addressing the long-standing challenges in the field.

Suggested Citation

  • F. P. Panei & P. Gkeka & M. Bonomi, 2024. "Identifying small-molecules binding sites in RNA conformational ensembles with SHAMAN," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49638-7
    DOI: 10.1038/s41467-024-49638-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-49638-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-49638-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Megan L. Ken & Rohit Roy & Ainan Geng & Laura R. Ganser & Akanksha Manghrani & Bryan R. Cullen & Ursula Schulze-Gahmen & Daniel Herschlag & Hashim M. Al-Hashimi, 2023. "RNA conformational propensities determine cellular activity," Nature, Nature, vol. 617(7962), pages 835-841, May.
    2. Peter Eastman & Jason Swails & John D Chodera & Robert T McGibbon & Yutong Zhao & Kyle A Beauchamp & Lee-Ping Wang & Andrew C Simmonett & Matthew P Harrigan & Chaya D Stern & Rafal P Wiewiora & Bernar, 2017. "OpenMM 7: Rapid development of high performance algorithms for molecular dynamics," PLOS Computational Biology, Public Library of Science, vol. 13(7), pages 1-17, July.
    3. John A. Howe & Hao Wang & Thierry O. Fischmann & Carl J. Balibar & Li Xiao & Andrew M. Galgoci & Juliana C. Malinverni & Todd Mayhood & Artjohn Villafania & Ali Nahvi & Nicholas Murgolo & Christopher , 2015. "Selective small-molecule inhibition of an RNA structural element," Nature, Nature, vol. 526(7575), pages 672-677, October.
    4. Sergio Ruiz-Carmona & Daniel Alvarez-Garcia & Nicolas Foloppe & A Beatriz Garmendia-Doval & Szilveszter Juhos & Peter Schmidtke & Xavier Barril & Roderick E Hubbard & S David Morley, 2014. "rDock: A Fast, Versatile and Open Source Program for Docking Ligands to Proteins and Nucleic Acids," PLOS Computational Biology, Public Library of Science, vol. 10(4), pages 1-7, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Janni Harju & Muriel C. F. Teeseling & Chase P. Broedersz, 2024. "Loop-extruders alter bacterial chromosome topology to direct entropic forces for segregation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Tom Dixon & Derek MacPherson & Barmak Mostofian & Taras Dauzhenka & Samuel Lotz & Dwight McGee & Sharon Shechter & Utsab R. Shrestha & Rafal Wiewiora & Zachary A. McDargh & Fen Pei & Rajat Pal & João , 2022. "Predicting the structural basis of targeted protein degradation by integrating molecular dynamics simulations with structural mass spectrometry," Nature Communications, Nature, vol. 13(1), pages 1-24, December.
    3. Joseph G. Beton & Thomas Mulvaney & Tristan Cragnolini & Maya Topf, 2024. "Cryo-EM structure and B-factor refinement with ensemble representation," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    4. Andreas Mardt & Tim Hempel & Cecilia Clementi & Frank Noé, 2022. "Deep learning to decompose macromolecules into independent Markovian domains," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Cheng Shen & Yuqing Zhang & Wenwen Cui & Yimeng Zhao & Danqi Sheng & Xinyu Teng & Miaoqing Shao & Muneyoshi Ichikawa & Jin Wang & Motoyuki Hattori, 2023. "Structural insights into the allosteric inhibition of P2X4 receptors," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    6. Re’em Moskovitz & Tossapol Pholcharee & Sophia M. DonVito & Bora Guloglu & Edward Lowe & Franziska Mohring & Robert W. Moon & Matthew K. Higgins, 2023. "Structural basis for DARC binding in reticulocyte invasion by Plasmodium vivax," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    7. David P. McDonogh & Julian D. Gale & Paolo Raiteri & Denis Gebauer, 2024. "Redefined ion association constants have consequences for calcium phosphate nucleation and biomineralization," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    8. Zsolt Fazekas & Dóra K. Menyhárd & András Perczel, 2024. "LoCoHD: a metric for comparing local environments of proteins," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    9. Jaewoon Jung & Cheng Tan & Yuji Sugita, 2024. "GENESIS CGDYN: large-scale coarse-grained MD simulation with dynamic load balancing for heterogeneous biomolecular systems," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    10. Amy Rice & Sourav Haldar & Eric Wang & Paul S. Blank & Sergey A. Akimov & Timur R. Galimzyanov & Richard W. Pastor & Joshua Zimmerberg, 2022. "Planar aggregation of the influenza viral fusion peptide alters membrane structure and hydration, promoting poration," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    11. Dawei Sun & Yonglian Sun & Eric Janezic & Tricia Zhou & Matthew Johnson & Caleigh Azumaya & Sigrid Noreng & Cecilia Chiu & Akiko Seki & Teresita L. Arenzana & John M. Nicoludis & Yongchang Shi & Baome, 2023. "Structural basis of antibody inhibition and chemokine activation of the human CC chemokine receptor 8," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    12. Shana Bergman & Rosemary J. Cater & Ambrose Plante & Filippo Mancia & George Khelashvili, 2023. "Substrate binding-induced conformational transitions in the omega-3 fatty acid transporter MFSD2A," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    13. Jongdae Won & Jinsung Kim & Hyeongseop Jeong & Jinhyeong Kim & Shasha Feng & Byeongseok Jeong & Misun Kwak & Juyeon Ko & Wonpil Im & Insuk So & Hyung Ho Lee, 2023. "Molecular architecture of the Gαi-bound TRPC5 ion channel," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    14. Kuang-Ting Ko & Frank Lennartz & David Mekhaiel & Bora Guloglu & Arianna Marini & Danielle J. Deuker & Carole A. Long & Matthijs M. Jore & Kazutoyo Miura & Sumi Biswas & Matthew K. Higgins, 2022. "Structure of the malaria vaccine candidate Pfs48/45 and its recognition by transmission blocking antibodies," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    15. Fengwei Li & Junjie Liu & Chao Liu & Ziyan Liu & Xiangda Peng & Yinyue Huang & Xiaoyu Chen & Xiangnan Sun & Sen Wang & Wei Chen & Dan Xiong & Xiaotong Diao & Sheng Wang & Jingjing Zhuang & Chuanliu Wu, 2024. "Cyclic peptides discriminate BCL-2 and its clinical mutants from BCL-XL by engaging a single-residue discrepancy," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    16. Sumirtha Balaratnam & Curran Rhodes & Desta Doro Bume & Colleen Connelly & Christopher C. Lai & James A. Kelley & Kamyar Yazdani & Philip J. Homan & Danny Incarnato & Tomoyuki Numata & John S. Schneek, 2021. "A chemical probe based on the PreQ1 metabolite enables transcriptome-wide mapping of binding sites," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    17. Hongjun Bai & Eric Lewitus & Yifan Li & Paul V. Thomas & Michelle Zemil & Mélanie Merbah & Caroline E. Peterson & Thujitha Thuraisamy & Phyllis A. Rees & Agnes Hajduczki & Vincent Dussupt & Bonnie Sli, 2024. "Contemporary HIV-1 consensus Env with AI-assisted redesigned hypervariable loops promote antibody binding," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    18. Do Hoon Kwon & Feng Zhang & Brett A. McCray & Shasha Feng & Meha Kumar & Jeremy M. Sullivan & Wonpil Im & Charlotte J. Sumner & Seok-Yong Lee, 2023. "TRPV4-Rho GTPase complex structures reveal mechanisms of gating and disease," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    19. Ritaban Halder & Daniel A. Nissley & Ian Sitarik & Yang Jiang & Yiyun Rao & Quyen V. Vu & Mai Suan Li & Justin Pritchard & Edward P. O’Brien, 2023. "How soluble misfolded proteins bypass chaperones at the molecular level," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    20. So-Hee Son & Gyuri Park & Junho Lim & Chang Yun Son & Seung Soo Oh & Ju Young Lee, 2022. "Chain flexibility of medicinal lipids determines their selective partitioning into lipid droplets," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49638-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.