IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-31513-y.html
   My bibliography  Save this article

Adenine oligomer directed synthesis of chiral gold nanoparticles

Author

Listed:
  • Nam Heon Cho

    (Seoul National University)

  • Young Bi Kim

    (Pohang University of Science and Technology (POSTECH))

  • Yoon Young Lee

    (Seoul National University)

  • Sang Won Im

    (Seoul National University)

  • Ryeong Myeong Kim

    (Seoul National University)

  • Jeong Won Kim

    (Seoul National University)

  • Seok Daniel Namgung

    (Seoul National University)

  • Hye-Eun Lee

    (Seoul National University)

  • Hyeohn Kim

    (Seoul National University)

  • Jeong Hyun Han

    (Seoul National University)

  • Hye Won Chung

    (Seoul National University)

  • Yoon Ho Lee

    (Seoul National University)

  • Jeong Woo Han

    (Pohang University of Science and Technology (POSTECH))

  • Ki Tae Nam

    (Seoul National University)

Abstract

Precise control of morphology and optical response of 3-dimensional chiral nanoparticles remain as a significant challenge. This work demonstrates chiral gold nanoparticle synthesis using single-stranded oligonucleotide as a chiral shape modifier. The homo-oligonucleotide composed of Adenine nucleobase specifically show a distinct chirality development with a dissymmetric factor up to g ~ 0.04 at visible wavelength, whereas other nucleobases show no development of chirality. The synthesized nanoparticle shows a counter-clockwise rotation of generated chiral arms with approximately 200 nm edge length. The molecular dynamics and density functional theory simulations reveal that Adenine shows the highest enantioselective interaction with Au(321)R/S facet in terms of binding orientation and affinity. This is attributed to the formation of sequence-specific intra-strand hydrogen bonding between nucleobases. We also found that different sequence programming of Adenine-and Cytosine-based oligomers result in chiral gold nanoparticles’ morphological and optical change. These results extend our understanding of the biomolecule-directed synthesis of chiral gold nanoparticles to sequence programmable deoxyribonucleic acid and provides a foundation for programmable synthesis of chiral gold nanoparticles.

Suggested Citation

  • Nam Heon Cho & Young Bi Kim & Yoon Young Lee & Sang Won Im & Ryeong Myeong Kim & Jeong Won Kim & Seok Daniel Namgung & Hye-Eun Lee & Hyeohn Kim & Jeong Hyun Han & Hye Won Chung & Yoon Ho Lee & Jeong W, 2022. "Adenine oligomer directed synthesis of chiral gold nanoparticles," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31513-y
    DOI: 10.1038/s41467-022-31513-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-31513-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-31513-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Anton Kuzyk & Robert Schreiber & Zhiyuan Fan & Günther Pardatscher & Eva-Maria Roller & Alexander Högele & Friedrich C. Simmel & Alexander O. Govorov & Tim Liedl, 2012. "DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response," Nature, Nature, vol. 483(7389), pages 311-314, March.
    2. Hye-Eun Lee & Ryeong Myeong Kim & Hyo-Yong Ahn & Yoon Young Lee & Gi Hyun Byun & Sang Won Im & Jungho Mun & Junsuk Rho & Ki Tae Nam, 2020. "Cysteine-encoded chirality evolution in plasmonic rhombic dodecahedral gold nanoparticles," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    3. Hye-Eun Lee & Hyo-Yong Ahn & Jungho Mun & Yoon Young Lee & Minkyung Kim & Nam Heon Cho & Kiseok Chang & Wook Sung Kim & Junsuk Rho & Ki Tae Nam, 2018. "Amino-acid- and peptide-directed synthesis of chiral plasmonic gold nanoparticles," Nature, Nature, vol. 556(7701), pages 360-365, April.
    4. Assaf Ben-Moshe & Sharon Grayer Wolf & Maya Bar Sadan & Lothar Houben & Zhiyuan Fan & Alexander O. Govorov & Gil Markovich, 2014. "Enantioselective control of lattice and shape chirality in inorganic nanostructures using chiral biomolecules," Nature Communications, Nature, vol. 5(1), pages 1-9, September.
    5. Hyeon-Ho Jeong & Andrew G. Mark & Mariana Alarcón-Correa & Insook Kim & Peter Oswald & Tung-Chun Lee & Peer Fischer, 2016. "Dispersion and shape engineered plasmonic nanosensors," Nature Communications, Nature, vol. 7(1), pages 1-7, September.
    6. Robert Schreiber & Ngoc Luong & Zhiyuan Fan & Anton Kuzyk & Philipp C. Nickels & Tao Zhang & David M. Smith & Bernard Yurke & Wan Kuang & Alexander O. Govorov & Tim Liedl, 2013. "Chiral plasmonic DNA nanostructures with switchable circular dichroism," Nature Communications, Nature, vol. 4(1), pages 1-6, December.
    7. Sung Yong Park & Abigail K. R. Lytton-Jean & Byeongdu Lee & Steven Weigand & George C. Schatz & Chad A. Mirkin, 2008. "DNA-programmable nanoparticle crystallization," Nature, Nature, vol. 451(7178), pages 553-556, January.
    8. Md. Abu Bakar & Mizuho Sugiuchi & Mitsuhiro Iwasaki & Yukatsu Shichibu & Katsuaki Konishi, 2017. "Hydrogen bonds to Au atoms in coordinated gold clusters," Nature Communications, Nature, vol. 8(1), pages 1-7, December.
    9. Chao Zhou & Xiaoyang Duan & Na Liu, 2015. "A plasmonic nanorod that walks on DNA origami," Nature Communications, Nature, vol. 6(1), pages 1-6, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bang Lin Li & Jun Jiang Luo & Hao Lin Zou & Qing-Meng Zhang & Liu-Bin Zhao & Hang Qian & Hong Qun Luo & David Tai Leong & Nian Bing Li, 2022. "Chiral nanocrystals grown from MoS2 nanosheets enable photothermally modulated enantioselective release of antimicrobial drugs," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Zhihua Cheng & Matthew R. Jones, 2022. "Assembly of planar chiral superlattices from achiral building blocks," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Jing Ai & Xueliang Zhang & Te Bai & Qing Shen & Peter Oleynikov & Yingying Duan & Osamu Terasaki & Shunai Che & Lu Han, 2022. "Synchronous quantitative analysis of chiral mesostructured inorganic crystals by 3D electron diffraction tomography," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Yoon Ho Lee & Yousang Won & Jungho Mun & Sanghyuk Lee & Yeseul Kim & Bongjun Yeom & Letian Dou & Junsuk Rho & Joon Hak Oh, 2023. "Hierarchically manufactured chiral plasmonic nanostructures with gigantic chirality for polarized emission and information encryption," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. Ufuk Kilic & Matthew Hilfiker & Shawn Wimer & Alexander Ruder & Eva Schubert & Mathias Schubert & Christos Argyropoulos, 2024. "Controlling the broadband enhanced light chirality with L-shaped dielectric metamaterials," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    6. Jiapeng Zheng & Christina Boukouvala & George R. Lewis & Yicong Ma & Yang Chen & Emilie Ringe & Lei Shao & Zhifeng Huang & Jianfang Wang, 2023. "Halide-assisted differential growth of chiral nanoparticles with threefold rotational symmetry," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    7. Baofu Ding & Pengyuan Zeng & Ziyang Huang & Lixin Dai & Tianshu Lan & Hao Xu & Yikun Pan & Yuting Luo & Qiangmin Yu & Hui-Ming Cheng & Bilu Liu, 2022. "A 2D material–based transparent hydrogel with engineerable interference colours," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    8. Minju Song & Yoonkyum Kim & Du San Baek & Ho Young Kim & Da Hwi Gu & Haiyang Li & Benjamin V. Cunning & Seong Eun Yang & Seung Hwae Heo & Seunghyun Lee & Minhyuk Kim & June Sung Lim & Hu Young Jeong &, 2023. "3D microprinting of inorganic porous materials by chemical linking-induced solidification of nanocrystals," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    9. Yuan Wang & Dian Niu & Guanghui Ouyang & Minghua Liu, 2022. "Double helical π-aggregate nanoarchitectonics for amplified circularly polarized luminescence," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    10. Chi Zhang & Huatian Hu & Chunmiao Ma & Yawen Li & Xujie Wang & Dongyao Li & Artur Movsesyan & Zhiming Wang & Alexander Govorov & Quan Gan & Tao Ding, 2024. "Quantum plasmonics pushes chiral sensing limit to single molecules: a paradigm for chiral biodetections," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    11. Zhiyuan Ding & Si Gao & Weina Fang & Chen Huang & Liqi Zhou & Xudong Pei & Xiaoguo Liu & Xiaoqing Pan & Chunhai Fan & Angus I. Kirkland & Peng Wang, 2022. "Three-dimensional electron ptychography of organic–inorganic hybrid nanostructures," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    12. Zhiwei Yang & Yanze Wei & Jingjing Wei & Zhijie Yang, 2022. "Chiral superstructures of inorganic nanorods by macroscopic mechanical grinding," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    13. Chad R. Simmons & Tara MacCulloch & Miroslav Krepl & Michael Matthies & Alex Buchberger & Ilyssa Crawford & Jiří Šponer & Petr Šulc & Nicholas Stephanopoulos & Hao Yan, 2022. "The influence of Holliday junction sequence and dynamics on DNA crystal self-assembly," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    14. Geon Yeong Kim & Shinho Kim & Ki Hyun Park & Hanhwi Jang & Moohyun Kim & Tae Won Nam & Kyeong Min Song & Hongjoo Shin & Yemin Park & Yeongin Cho & Jihyeon Yeom & Min-Jae Choi & Min Seok Jang & Yeon Si, 2024. "Chiral 3D structures through multi-dimensional transfer printing of multilayer quantum dot patterns," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    15. Sunihl Ma & Young-Kwang Jung & Jihoon Ahn & Jihoon Kyhm & Jeiwan Tan & Hyungsoo Lee & Gyumin Jang & Chan Uk Lee & Aron Walsh & Jooho Moon, 2022. "Elucidating the origin of chiroptical activity in chiral 2D perovskites through nano-confined growth," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    16. Huacheng Li & Xin Xu & Rongcheng Guan & Artur Movsesyan & Zhenni Lu & Qiliang Xu & Ziyun Jiang & Yurong Yang & Majid Khan & Jin Wen & Hongwei Wu & Santiago Moya & Gil Markovich & Huatian Hu & Zhiming , 2024. "Collective chiroptical activity through the interplay of excitonic and charge-transfer effects in localized plasmonic fields," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    17. Tyler G Moore & Max H Garzon & Russell J Deaton, 2015. "Probabilistic Analysis of Pattern Formation in Monotonic Self-Assembly," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-23, September.
    18. Fan Cui & Sophie Marbach & Jeana Aojie Zheng & Miranda Holmes-Cerfon & David J. Pine, 2022. "Comprehensive view of microscopic interactions between DNA-coated colloids," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    19. Sungwook Choi & Sang Won Im & Ji-Hyeok Huh & Sungwon Kim & Jaeseung Kim & Yae-Chan Lim & Ryeong Myeong Kim & Jeong Hyun Han & Hyeohn Kim & Michael Sprung & Su Yong Lee & Wonsuk Cha & Ross Harder & Seu, 2023. "Strain and crystallographic identification of the helically concaved gap surfaces of chiral nanoparticles," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    20. Si Li & Xinxin Xu & Liguang Xu & Hengwei Lin & Hua Kuang & Chuanlai Xu, 2024. "Emerging trends in chiral inorganic nanomaterials for enantioselective catalysis," Nature Communications, Nature, vol. 15(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31513-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.