IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-019-14117-x.html
   My bibliography  Save this article

Cysteine-encoded chirality evolution in plasmonic rhombic dodecahedral gold nanoparticles

Author

Listed:
  • Hye-Eun Lee

    (Seoul National University)

  • Ryeong Myeong Kim

    (Seoul National University)

  • Hyo-Yong Ahn

    (Seoul National University)

  • Yoon Young Lee

    (Seoul National University)

  • Gi Hyun Byun

    (Seoul National University)

  • Sang Won Im

    (Seoul National University)

  • Jungho Mun

    (Pohang University of Science and Technology (POSTECH))

  • Junsuk Rho

    (Pohang University of Science and Technology (POSTECH)
    Pohang University of Science and Technology (POSTECH))

  • Ki Tae Nam

    (Seoul National University)

Abstract

Chiral plasmonic nanostructures have opened up unprecedented opportunities in optical applications. We present chirality evolution in nanoparticles focusing on the crystallographic aspects and elucidate key parameters for chiral structure formation. From a detailed understanding of chirality formation, we achieved a morphology (432 Helicoid IV) of three-dimensionally controlled chiral plasmonic nanoparticles based on the rhombic dodecahedral shape. The role of the synthesis parameters, seed, cysteine, cetyltrimethylammonium bromide and ascorbic acid on chiral formation are studied, and based on this understanding, the systematic control of the chiral structure is presented. The relation between the modulated chiral structure factors and optical response is further elucidated by electromagnetic simulation. Importantly, a new optical response is achieved by assembling chiral nanoparticles into a film. This comprehensive study of chiral nanoparticles will provide valuable insight for the further development of diverse chiral plasmonic nanostructures with fascinating properties.

Suggested Citation

  • Hye-Eun Lee & Ryeong Myeong Kim & Hyo-Yong Ahn & Yoon Young Lee & Gi Hyun Byun & Sang Won Im & Jungho Mun & Junsuk Rho & Ki Tae Nam, 2020. "Cysteine-encoded chirality evolution in plasmonic rhombic dodecahedral gold nanoparticles," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-019-14117-x
    DOI: 10.1038/s41467-019-14117-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-14117-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-14117-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nam Heon Cho & Young Bi Kim & Yoon Young Lee & Sang Won Im & Ryeong Myeong Kim & Jeong Won Kim & Seok Daniel Namgung & Hye-Eun Lee & Hyeohn Kim & Jeong Hyun Han & Hye Won Chung & Yoon Ho Lee & Jeong W, 2022. "Adenine oligomer directed synthesis of chiral gold nanoparticles," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Liang Qiao & Nia Pollard & Ravithree D. Senanayake & Zhi Yang & Minjung Kim & Arzeena S. Ali & Minh Tam Hoang & Nan Yao & Yimo Han & Rigoberto Hernandez & Andre Z. Clayborne & Matthew R. Jones, 2023. "Atomically precise nanoclusters predominantly seed gold nanoparticle syntheses," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Ufuk Kilic & Matthew Hilfiker & Shawn Wimer & Alexander Ruder & Eva Schubert & Mathias Schubert & Christos Argyropoulos, 2024. "Controlling the broadband enhanced light chirality with L-shaped dielectric metamaterials," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Jiapeng Zheng & Christina Boukouvala & George R. Lewis & Yicong Ma & Yang Chen & Emilie Ringe & Lei Shao & Zhifeng Huang & Jianfang Wang, 2023. "Halide-assisted differential growth of chiral nanoparticles with threefold rotational symmetry," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. Bang Lin Li & Jun Jiang Luo & Hao Lin Zou & Qing-Meng Zhang & Liu-Bin Zhao & Hang Qian & Hong Qun Luo & David Tai Leong & Nian Bing Li, 2022. "Chiral nanocrystals grown from MoS2 nanosheets enable photothermally modulated enantioselective release of antimicrobial drugs," Nature Communications, Nature, vol. 13(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-019-14117-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.