IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v450y2007i7172d10.1038_nature06522.html
   My bibliography  Save this article

Dynamic personalities of proteins

Author

Listed:
  • Katherine Henzler-Wildman

    (Howard Hughes Medical Institute, Brandeis University)

  • Dorothee Kern

    (Howard Hughes Medical Institute, Brandeis University)

Abstract

Because proteins are central to cellular function, researchers have sought to uncover the secrets of how these complex macromolecules execute such a fascinating variety of functions. Although static structures are known for many proteins, the functions of proteins are governed ultimately by their dynamic character (or 'personality'). The dream is to 'watch' proteins in action in real time at atomic resolution. This requires addition of a fourth dimension, time, to structural biology so that the positions in space and time of all atoms in a protein can be described in detail.

Suggested Citation

  • Katherine Henzler-Wildman & Dorothee Kern, 2007. "Dynamic personalities of proteins," Nature, Nature, vol. 450(7172), pages 964-972, December.
  • Handle: RePEc:nat:nature:v:450:y:2007:i:7172:d:10.1038_nature06522
    DOI: 10.1038/nature06522
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature06522
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature06522?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dong Long & Rafael Brüschweiler, 2011. "In Silico Elucidation of the Recognition Dynamics of Ubiquitin," PLOS Computational Biology, Public Library of Science, vol. 7(4), pages 1-9, April.
    2. Yi-Ling Chen & Michael Habeck, 2017. "Data-driven coarse graining of large biomolecular structures," PLOS ONE, Public Library of Science, vol. 12(8), pages 1-17, August.
    3. Antony D. St-Jacques & Joshua M. Rodriguez & Matthew G. Eason & Scott M. Foster & Safwat T. Khan & Adam M. Damry & Natalie K. Goto & Michael C. Thompson & Roberto A. Chica, 2023. "Computational remodeling of an enzyme conformational landscape for altered substrate selectivity," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. Kalyan S. Chakrabarti & Simon Olsson & Supriya Pratihar & Karin Giller & Kerstin Overkamp & Ko On Lee & Vytautas Gapsys & Kyoung-Seok Ryu & Bert L. Groot & Frank Noé & Stefan Becker & Donghan Lee & Th, 2022. "A litmus test for classifying recognition mechanisms of transiently binding proteins," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. César Augusto F de Oliveira & Barry J Grant & Michelle Zhou & J Andrew McCammon, 2011. "Large-Scale Conformational Changes of Trypanosoma cruzi Proline Racemase Predicted by Accelerated Molecular Dynamics Simulation," PLOS Computational Biology, Public Library of Science, vol. 7(10), pages 1-7, October.
    6. Nicole Stéphanie Galenkamp & Sarah Zernia & Yulan B. Oppen & Marco Noort & Andreas Milias Argeitis & Giovanni Maglia, 2024. "Allostery can convert binding free energies into concerted domain motions in enzymes," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    7. Tobias Linder & Bert L de Groot & Anna Stary-Weinzinger, 2013. "Probing the Energy Landscape of Activation Gating of the Bacterial Potassium Channel KcsA," PLOS Computational Biology, Public Library of Science, vol. 9(5), pages 1-9, May.
    8. Oliver F. Harder & Sarah V. Barrass & Marcel Drabbels & Ulrich J. Lorenz, 2023. "Fast viral dynamics revealed by microsecond time-resolved cryo-EM," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    9. Sean L Seyler & Avishek Kumar & M F Thorpe & Oliver Beckstein, 2015. "Path Similarity Analysis: A Method for Quantifying Macromolecular Pathways," PLOS Computational Biology, Public Library of Science, vol. 11(10), pages 1-37, October.
    10. Karain, Wael I., 2019. "Investigating large-amplitude protein loop motions as extreme events using recurrence interval analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 1-10.
    11. Wojciech Potrzebowski & Jill Trewhella & Ingemar Andre, 2018. "Bayesian inference of protein conformational ensembles from limited structural data," PLOS Computational Biology, Public Library of Science, vol. 14(12), pages 1-27, December.
    12. Jonathan Schubert & Andrea Schulze & Chrisostomos Prodromou & Hannes Neuweiler, 2021. "Two-colour single-molecule photoinduced electron transfer fluorescence imaging microscopy of chaperone dynamics," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    13. Maciej Majewski & Adrià Pérez & Philipp Thölke & Stefan Doerr & Nicholas E. Charron & Toni Giorgino & Brooke E. Husic & Cecilia Clementi & Frank Noé & Gianni Fabritiis, 2023. "Machine learning coarse-grained potentials of protein thermodynamics," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    14. Alistair Bailey & Andy van Hateren & Tim Elliott & Jörn M Werner, 2014. "Two Polymorphisms Facilitate Differences in Plasticity between Two Chicken Major Histocompatibility Complex Class I Proteins," PLOS ONE, Public Library of Science, vol. 9(2), pages 1-11, February.
    15. Feiyu Zhao & Tao Zhang & Xiaodi Sun & Xiyun Zhang & Letong Chen & Hejun Wang & Jinze Li & Peng Fan & Liangxue Lai & Tingting Sui & Zhanjun Li, 2023. "A strategy for Cas13 miniaturization based on the structure and AlphaFold," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    16. Markus Götz & Anders Barth & Søren S.-R. Bohr & Richard Börner & Jixin Chen & Thorben Cordes & Dorothy A. Erie & Christian Gebhardt & Mélodie C. A. S. Hadzic & George L. Hamilton & Nikos S. Hatzakis &, 2022. "A blind benchmark of analysis tools to infer kinetic rate constants from single-molecule FRET trajectories," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    17. Jochen S Hub & Bert L de Groot, 2009. "Detection of Functional Modes in Protein Dynamics," PLOS Computational Biology, Public Library of Science, vol. 5(8), pages 1-13, August.
    18. Jian-Hua Wang & Yu-Liang Tang & Zhou Gong & Rohit Jain & Fan Xiao & Yu Zhou & Dan Tan & Qiang Li & Niu Huang & Shu-Qun Liu & Keqiong Ye & Chun Tang & Meng-Qiu Dong & Xiaoguang Lei, 2022. "Characterization of protein unfolding by fast cross-linking mass spectrometry using di-ortho-phthalaldehyde cross-linkers," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    19. Eugene Klyshko & Justin Sung-Ho Kim & Lauren McGough & Victoria Valeeva & Ethan Lee & Rama Ranganathan & Sarah Rauscher, 2024. "Functional protein dynamics in a crystal," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    20. Bryant Gipson & Mark Moll & Lydia E Kavraki, 2013. "SIMS: A Hybrid Method for Rapid Conformational Analysis," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-12, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:450:y:2007:i:7172:d:10.1038_nature06522. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.