IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-31278-4.html
   My bibliography  Save this article

Analysis of diverse double-strand break synapsis with Polλ reveals basis for unique substrate specificity in nonhomologous end-joining

Author

Listed:
  • Andrea M. Kaminski

    (National Institutes of Health)

  • Kishore K. Chiruvella

    (University of North Carolina at Chapel Hill)

  • Dale A. Ramsden

    (University of North Carolina at Chapel Hill)

  • Katarzyna Bebenek

    (National Institutes of Health)

  • Thomas A. Kunkel

    (National Institutes of Health)

  • Lars C. Pedersen

    (National Institutes of Health)

Abstract

DNA double-strand breaks (DSBs) threaten genomic stability, since their persistence can lead to loss of critical genetic information, chromosomal translocations or rearrangements, and cell death. DSBs can be repaired through the nonhomologous end-joining pathway (NHEJ), which processes and ligates DNA ends efficiently to prevent or minimize sequence loss. Polymerase λ (Polλ), one of the Family X polymerases, fills sequence gaps of DSB substrates with a strict specificity for a base-paired primer terminus. There is little information regarding Polλ’s approach to engaging such substrates. We used in vitro polymerization and cell-based NHEJ assays to explore the contributions of conserved loop regions toward DSB substrate specificity and utilization. In addition, we present multiple crystal structures of Polλ in synapsis with varying biologically relevant DSB end configurations, revealing how key structural features and hydrogen bonding networks work in concert to stabilize these tenuous, potentially cytotoxic DNA lesions during NHEJ.

Suggested Citation

  • Andrea M. Kaminski & Kishore K. Chiruvella & Dale A. Ramsden & Katarzyna Bebenek & Thomas A. Kunkel & Lars C. Pedersen, 2022. "Analysis of diverse double-strand break synapsis with Polλ reveals basis for unique substrate specificity in nonhomologous end-joining," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31278-4
    DOI: 10.1038/s41467-022-31278-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-31278-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-31278-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Andrea M. Kaminski & John M. Pryor & Dale A. Ramsden & Thomas A. Kunkel & Lars C. Pedersen & Katarzyna Bebenek, 2020. "Structural snapshots of human DNA polymerase μ engaged on a DNA double-strand break," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    2. Stephen P. Jackson & Jiri Bartek, 2009. "The DNA-damage response in human biology and disease," Nature, Nature, vol. 461(7267), pages 1071-1078, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zita Gál & Stavroula Boukoura & Kezia Catharina Oxe & Sara Badawi & Blanca Nieto & Lea Milling Korsholm & Sille Blangstrup Geisler & Ekaterina Dulina & Anna Vestergaard Rasmussen & Christina Dahl & We, 2024. "Hyper-recombination in ribosomal DNA is driven by long-range resection-independent RAD51 accumulation," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    2. Ilaria Rosso & Corey Jones-Weinert & Francesca Rossiello & Matteo Cabrini & Silvia Brambillasca & Leonel Munoz-Sagredo & Zeno Lavagnino & Emanuele Martini & Enzo Tedone & Massimiliano Garre’ & Julio A, 2023. "Alternative lengthening of telomeres (ALT) cells viability is dependent on C-rich telomeric RNAs," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    3. Samah W. Awwad & Colm Doyle & Josie Coulthard & Aldo S. Bader & Nadia Gueorguieva & Simon Lam & Vipul Gupta & Rimma Belotserkovskaya & Tuan-Anh Tran & Shankar Balasubramanian & Stephen P. Jackson, 2025. "KLF5 loss sensitizes cells to ATR inhibition and is synthetic lethal with ARID1A deficiency," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
    4. Daipayan Banerjee & Kurt Langberg & Salar Abbas & Eric Odermatt & Praveen Yerramothu & Martin Volaric & Matthew A. Reidenbach & Kathy J. Krentz & C. Dustin Rubinstein & David L. Brautigan & Tarek Abba, 2021. "A non-canonical, interferon-independent signaling activity of cGAMP triggers DNA damage response signaling," Nature Communications, Nature, vol. 12(1), pages 1-24, December.
    5. Jérémy Sandoz & Max Cigrang & Amélie Zachayus & Philippe Catez & Lise-Marie Donnio & Clèmence Elly & Jadwiga Nieminuszczy & Pietro Berico & Cathy Braun & Sergey Alekseev & Jean-Marc Egly & Wojciech Ni, 2023. "Active mRNA degradation by EXD2 nuclease elicits recovery of transcription after genotoxic stress," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    6. Ross J. Hill & Nazareno Bona & Job Smink & Hannah K. Webb & Alastair Crisp & Juan I. Garaycoechea & Gerry P. Crossan, 2024. "p53 regulates diverse tissue-specific outcomes to endogenous DNA damage in mice," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    7. Qin Qin & Jing Lu & Hongcheng Zhu & Liping Xu & Hongyan Cheng & Liangliang Zhan & Xi Yang & Chi Zhang & Xinchen Sun, 2014. "PARP-1 Val762Ala Polymorphism and Risk of Cancer: A Meta-Analysis Based on 39 Case-Control Studies," PLOS ONE, Public Library of Science, vol. 9(5), pages 1-12, May.
    8. Wen-Qi Ma & Xi-Qiong Han & Xin Wang & Ying Wang & Yi Zhu & Nai-Feng Liu, 2016. "Associations between XRCC1 Gene Polymorphisms and Coronary Artery Disease: A Meta-Analysis," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-15, November.
    9. Andreas Luttens & Duc Duy Vo & Emma R. Scaletti & Elisée Wiita & Ingrid Almlöf & Olov Wallner & Jonathan Davies & Sara Košenina & Liuzhen Meng & Maeve Long & Oliver Mortusewicz & Geoffrey Masuyer & Fl, 2025. "Virtual fragment screening for DNA repair inhibitors in vast chemical space," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
    10. Zhang, L.W. & Cheng, Y.M. & Liew, K.M., 2014. "Mathematical modeling of p53 pulses in G2 phase with DNA damage," Applied Mathematics and Computation, Elsevier, vol. 232(C), pages 1000-1010.
    11. Pieranna Chiarella & Pasquale Capone & Renata Sisto, 2023. "Contribution of Genetic Polymorphisms in Human Health," IJERPH, MDPI, vol. 20(2), pages 1-15, January.
    12. Anne Margriet Heijink & Colin Stok & David Porubsky & Eleni Maria Manolika & Jurrian K. Kanter & Yannick P. Kok & Marieke Everts & H. Rudolf Boer & Anastasia Audrey & Femke J. Bakker & Elles Wierenga , 2022. "Sister chromatid exchanges induced by perturbed replication can form independently of BRCA1, BRCA2 and RAD51," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    13. Anthony Veltri & Christopher M. R. Lang & Gaia Cangiotti & Chim Kei Chan & Wen-Hui Lien, 2022. "ROR2 regulates self-renewal and maintenance of hair follicle stem cells," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    14. Lina Wang & Siru Li & Kai Wang & Na Wang & Qiaoling Liu & Zhen Sun & Li Wang & Lulu Wang & Quentin Liu & Chengli Song & Caigang Liu & Qingkai Yang, 2022. "DNA mechanical flexibility controls DNA potential to activate cGAS-mediated immune surveillance," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    15. Alessio Magis & Michaela Limmer & Venkat Mudiyam & David Monchaud & Stefan Juranek & Katrin Paeschke, 2023. "UV-induced G4 DNA structures recruit ZRF1 which prevents UV-induced senescence," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    16. Feng Shi & Weigang Hu & Jiaojiao Wu & Miaofei Han & Jiazhou Wang & Wei Zhang & Qing Zhou & Jingjie Zhou & Ying Wei & Ying Shao & Yanbo Chen & Yue Yu & Xiaohuan Cao & Yiqiang Zhan & Xiang Sean Zhou & Y, 2022. "Deep learning empowered volume delineation of whole-body organs-at-risk for accelerated radiotherapy," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    17. Kielen R. Zuurbier & Rene Solano Fonseca & Sonja L. B. Arneaud & Jordan M. Wall & Juhee Kim & Lexus Tatge & Gupse Otuzoglu & Sofia Bali & Patrick Metang & Peter M. Douglas, 2024. "Yin Yang 1 and guanine quadruplexes protect dopaminergic neurons from cellular stress via transmissive dormancy," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    18. Hanrui Zhang & Julian Kreis & Sven-Eric Schelhorn & Heike Dahmen & Thomas Grombacher & Michael Zühlsdorf & Frank T. Zenke & Yuanfang Guan, 2023. "Mapping combinatorial drug effects to DNA damage response kinase inhibitors," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    19. Halh Al-Serori & Franziska Ferk & Michael Kundi & Andrea Bileck & Christopher Gerner & Miroslav Mišík & Armen Nersesyan & Monika Waldherr & Manuel Murbach & Tamara T Lah & Christel Herold-Mende & Andr, 2018. "Mobile phone specific electromagnetic fields induce transient DNA damage and nucleotide excision repair in serum-deprived human glioblastoma cells," PLOS ONE, Public Library of Science, vol. 13(4), pages 1-17, April.
    20. Jenny Kaur Singh & Rebecca Smith & Magdalena B. Rother & Anton J. L. Groot & Wouter W. Wiegant & Kees Vreeken & Ostiane D’Augustin & Robbert Q. Kim & Haibin Qian & Przemek M. Krawczyk & Román González, 2021. "Zinc finger protein ZNF384 is an adaptor of Ku to DNA during classical non-homologous end-joining," Nature Communications, Nature, vol. 12(1), pages 1-21, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31278-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.