IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-26691-0.html
   My bibliography  Save this article

Zinc finger protein ZNF384 is an adaptor of Ku to DNA during classical non-homologous end-joining

Author

Listed:
  • Jenny Kaur Singh

    (Leiden University Medical Center)

  • Rebecca Smith

    (Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes)—UMR 6290)

  • Magdalena B. Rother

    (Leiden University Medical Center)

  • Anton J. L. Groot

    (Leiden University Medical Center)

  • Wouter W. Wiegant

    (Leiden University Medical Center)

  • Kees Vreeken

    (Leiden University Medical Center)

  • Ostiane D’Augustin

    (Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes)—UMR 6290
    Université Paris-Saclay, Université de Paris, CEA)

  • Robbert Q. Kim

    (Leiden University Medical Center)

  • Haibin Qian

    (Amsterdam University Medical Centers (location AMC), Cancer Center Amsterdam)

  • Przemek M. Krawczyk

    (Amsterdam University Medical Centers (location AMC), Cancer Center Amsterdam)

  • Román González-Prieto

    (Amsterdam University Medical Centers (location AMC), Cancer Center Amsterdam)

  • Alfred C. O. Vertegaal

    (Amsterdam University Medical Centers (location AMC), Cancer Center Amsterdam)

  • Meindert Lamers

    (Amsterdam University Medical Centers (location AMC), Cancer Center Amsterdam)

  • Sébastien Huet

    (Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes)—UMR 6290
    Institut Universitaire de France)

  • Haico Attikum

    (Leiden University Medical Center)

Abstract

DNA double-strand breaks (DSBs) are among the most deleterious types of DNA damage as they can lead to mutations and chromosomal rearrangements, which underlie cancer development. Classical non-homologous end-joining (cNHEJ) is the dominant pathway for DSB repair in human cells, involving the DNA-binding proteins XRCC6 (Ku70) and XRCC5 (Ku80). Other DNA-binding proteins such as Zinc Finger (ZnF) domain-containing proteins have also been implicated in DNA repair, but their role in cNHEJ remained elusive. Here we show that ZNF384, a member of the C2H2 family of ZnF proteins, binds DNA ends in vitro and is recruited to DSBs in vivo. ZNF384 recruitment requires the poly(ADP-ribosyl) polymerase 1 (PARP1)-dependent expansion of damaged chromatin, followed by binding of its C2H2 motifs to the exposed DNA. Moreover, ZNF384 interacts with Ku70/Ku80 via its N-terminus, thereby promoting Ku70/Ku80 assembly and the accrual of downstream cNHEJ factors, including APLF and XRCC4/LIG4, for efficient repair at DSBs. Altogether, our data suggest that ZNF384 acts as a ‘Ku-adaptor’ that binds damaged DNA and Ku70/Ku80 to facilitate the build-up of a cNHEJ repairosome, highlighting a role for ZNF384 in DSB repair and genome maintenance.

Suggested Citation

  • Jenny Kaur Singh & Rebecca Smith & Magdalena B. Rother & Anton J. L. Groot & Wouter W. Wiegant & Kees Vreeken & Ostiane D’Augustin & Robbert Q. Kim & Haibin Qian & Przemek M. Krawczyk & Román González, 2021. "Zinc finger protein ZNF384 is an adaptor of Ku to DNA during classical non-homologous end-joining," Nature Communications, Nature, vol. 12(1), pages 1-21, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26691-0
    DOI: 10.1038/s41467-021-26691-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-26691-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-26691-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yaron Galanty & Rimma Belotserkovskaya & Julia Coates & Sophie Polo & Kyle M. Miller & Stephen P. Jackson, 2009. "Mammalian SUMO E3-ligases PIAS1 and PIAS4 promote responses to DNA double-strand breaks," Nature, Nature, vol. 462(7275), pages 935-939, December.
    2. Magdalena B. Rother & Stefania Pellegrino & Rebecca Smith & Marco Gatti & Cornelia Meisenberg & Wouter W. Wiegant & Martijn S. Luijsterburg & Ralph Imhof & Jessica A. Downs & Alfred C. O. Vertegaal & , 2020. "CHD7 and 53BP1 regulate distinct pathways for the re-ligation of DNA double-strand breaks," Nature Communications, Nature, vol. 11(1), pages 1-19, December.
    3. Marie-Christine Caron & Ajit K. Sharma & Julia O’Sullivan & Logan R. Myler & Maria Tedim Ferreira & Amélie Rodrigue & Yan Coulombe & Chantal Ethier & Jean-Philippe Gagné & Marie-France Langelier & Joh, 2019. "Poly(ADP-ribose) polymerase-1 antagonizes DNA resection at double-strand breaks," Nature Communications, Nature, vol. 10(1), pages 1-16, December.
    4. George E. Ronson & Ann Liza Piberger & Martin R. Higgs & Anna L. Olsen & Grant S. Stewart & Peter J. McHugh & Eva Petermann & Nicholas D. Lakin, 2018. "PARP1 and PARP2 stabilise replication forks at base excision repair intermediates through Fbh1-dependent Rad51 regulation," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    5. Ramesh Kumar & Román González-Prieto & Zhenyu Xiao & Matty Verlaan-de Vries & Alfred C. O. Vertegaal, 2017. "The STUbL RNF4 regulates protein group SUMOylation by targeting the SUMO conjugation machinery," Nature Communications, Nature, vol. 8(1), pages 1-16, December.
    6. Bailin Zhao & Go Watanabe & Michael J. Morten & Dylan A. Reid & Eli Rothenberg & Michael R. Lieber, 2019. "The essential elements for the noncovalent association of two DNA ends during NHEJ synapsis," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
    7. Stephen P. Jackson & Jiri Bartek, 2009. "The DNA-damage response in human biology and disease," Nature, Nature, vol. 461(7267), pages 1071-1078, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laura A. Claessens & Matty Verlaan-de Vries & Ilona J. Graaf & Alfred C. O. Vertegaal, 2023. "SENP6 regulates localization and nuclear condensation of DNA damage response proteins by group deSUMOylation," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    2. Charlotte Blessing & Katja Apelt & Diana Heuvel & Claudia Gonzalez-Leal & Magdalena B. Rother & Melanie Woude & Román González-Prieto & Adi Yifrach & Avital Parnas & Rashmi G. Shah & Tia Tyrsett Kuo &, 2022. "XPC–PARP complexes engage the chromatin remodeler ALC1 to catalyze global genome DNA damage repair," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    3. Ilaria Rosso & Corey Jones-Weinert & Francesca Rossiello & Matteo Cabrini & Silvia Brambillasca & Leonel Munoz-Sagredo & Zeno Lavagnino & Emanuele Martini & Enzo Tedone & Massimiliano Garre’ & Julio A, 2023. "Alternative lengthening of telomeres (ALT) cells viability is dependent on C-rich telomeric RNAs," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    4. Halh Al-Serori & Franziska Ferk & Michael Kundi & Andrea Bileck & Christopher Gerner & Miroslav Mišík & Armen Nersesyan & Monika Waldherr & Manuel Murbach & Tamara T Lah & Christel Herold-Mende & Andr, 2018. "Mobile phone specific electromagnetic fields induce transient DNA damage and nucleotide excision repair in serum-deprived human glioblastoma cells," PLOS ONE, Public Library of Science, vol. 13(4), pages 1-17, April.
    5. Orhi Barroso-Gomila & Fredrik Trulsson & Veronica Muratore & Iñigo Canosa & Laura Merino-Cacho & Ana Rosa Cortazar & Coralia Pérez & Mikel Azkargorta & Ibon Iloro & Arkaitz Carracedo & Ana M. Aransay , 2021. "Identification of proximal SUMO-dependent interactors using SUMO-ID," Nature Communications, Nature, vol. 12(1), pages 1-19, December.
    6. Megan E. Luedeman & Susanna Stroik & Wanjuan Feng & Adam J. Luthman & Gaorav P. Gupta & Dale A. Ramsden, 2022. "Poly(ADP) ribose polymerase promotes DNA polymerase theta-mediated end joining by activation of end resection," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    7. Daipayan Banerjee & Kurt Langberg & Salar Abbas & Eric Odermatt & Praveen Yerramothu & Martin Volaric & Matthew A. Reidenbach & Kathy J. Krentz & C. Dustin Rubinstein & David L. Brautigan & Tarek Abba, 2021. "A non-canonical, interferon-independent signaling activity of cGAMP triggers DNA damage response signaling," Nature Communications, Nature, vol. 12(1), pages 1-24, December.
    8. Megha Jhanji & Chintada Nageswara Rao & Jacob C. Massey & Marion C. Hope & Xueyan Zhou & C. Dirk Keene & Tao Ma & Michael D. Wyatt & Jason A. Stewart & Mathew Sajish, 2022. "Cis- and trans-resveratrol have opposite effects on histone serine-ADP-ribosylation and tyrosine induced neurodegeneration," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    9. Frederick Richards & Marta J. Llorca-Cardenosa & Jamie Langton & Sara C. Buch-Larsen & Noor F. Shamkhi & Abhishek Bharadwaj Sharma & Michael L. Nielsen & Nicholas D. Lakin, 2023. "Regulation of Rad52-dependent replication fork recovery through serine ADP-ribosylation of PolD3," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    10. Miho M. Suzuki & Kenta Iijima & Koichi Ogami & Keiko Shinjo & Yoshiteru Murofushi & Jingqi Xie & Xuebing Wang & Yotaro Kitano & Akira Mamiya & Yuji Kibe & Tatsunori Nishimura & Fumiharu Ohka & Ryuta S, 2023. "TUG1-mediated R-loop resolution at microsatellite loci as a prerequisite for cancer cell proliferation," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    11. Ye Cai & Huifen Cao & Fang Wang & Yufei Zhang & Philipp Kapranov, 2022. "Complex genomic patterns of abasic sites in mammalian DNA revealed by a high-resolution SSiNGLe-AP method," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
    12. Sidrah Shah & Alison Cheung & Mikolaj Kutka & Matin Sheriff & Stergios Boussios, 2022. "Epithelial Ovarian Cancer: Providing Evidence of Predisposition Genes," IJERPH, MDPI, vol. 19(13), pages 1-14, July.
    13. Jérémy Sandoz & Max Cigrang & Amélie Zachayus & Philippe Catez & Lise-Marie Donnio & Clèmence Elly & Jadwiga Nieminuszczy & Pietro Berico & Cathy Braun & Sergey Alekseev & Jean-Marc Egly & Wojciech Ni, 2023. "Active mRNA degradation by EXD2 nuclease elicits recovery of transcription after genotoxic stress," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    14. Jessica D. Tischler & Hiroshi Tsuchida & Rosevalentine Bosire & Tommy T. Oda & Ana Park & Richard O. Adeyemi, 2024. "FLIP(C1orf112)-FIGNL1 complex regulates RAD51 chromatin association to promote viability after replication stress," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    15. Lin-Lin Zhou & Tao Zhang & Yun Xue & Chuan Yue & Yihui Pan & Pengyu Wang & Teng Yang & Meixia Li & Hu Zhou & Kan Ding & Jianhua Gan & Hongbin Ji & Cai-Guang Yang, 2023. "Selective activator of human ClpP triggers cell cycle arrest to inhibit lung squamous cell carcinoma," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    16. Daniel Gómez-Cabello & George Pappas & Diana Aguilar-Morante & Christoffel Dinant & Jiri Bartek, 2022. "CtIP-dependent nascent RNA expression flanking DNA breaks guides the choice of DNA repair pathway," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    17. Pedro Weickert & Hao-Yi Li & Maximilian J. Götz & Sophie Dürauer & Denitsa Yaneva & Shubo Zhao & Jacqueline Cordes & Aleida C. Acampora & Ignasi Forne & Axel Imhof & Julian Stingele, 2023. "SPRTN patient variants cause global-genome DNA-protein crosslink repair defects," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    18. Pradeep Ramalingam & Michael C. Gutkin & Michael G. Poulos & Taylor Tillery & Chelsea Doughty & Agatha Winiarski & Ana G. Freire & Shahin Rafii & David Redmond & Jason M. Butler, 2023. "Restoring bone marrow niche function rejuvenates aged hematopoietic stem cells by reactivating the DNA Damage Response," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    19. Ross J. Hill & Nazareno Bona & Job Smink & Hannah K. Webb & Alastair Crisp & Juan I. Garaycoechea & Gerry P. Crossan, 2024. "p53 regulates diverse tissue-specific outcomes to endogenous DNA damage in mice," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    20. Andrea M. Kaminski & Kishore K. Chiruvella & Dale A. Ramsden & Katarzyna Bebenek & Thomas A. Kunkel & Lars C. Pedersen, 2022. "Analysis of diverse double-strand break synapsis with Polλ reveals basis for unique substrate specificity in nonhomologous end-joining," Nature Communications, Nature, vol. 13(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26691-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.