IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-30892-6.html
   My bibliography  Save this article

Recovery of neural dynamics criticality in personalized whole-brain models of stroke

Author

Listed:
  • Rodrigo P. Rocha

    (Universidade Federal de Santa Catarina
    University of São Paulo
    Università di Padova)

  • Loren Koçillari

    (Università di Padova
    Istituto Italiano di Tecnologia
    Università di Padova and INFN)

  • Samir Suweis

    (Università di Padova
    Università di Padova and INFN)

  • Michele Filippo De Grazia

    (IRCCS San Camillo Hospital)

  • Michel Thiebaut Schotten

    (Sorbonne Universities
    CEA University of Bordeaux)

  • Marco Zorzi

    (IRCCS San Camillo Hospital
    Università di Padova)

  • Maurizio Corbetta

    (Università di Padova
    Università di Padova
    Fondazione Biomedica)

Abstract

The critical brain hypothesis states that biological neuronal networks, because of their structural and functional architecture, work near phase transitions for optimal response to internal and external inputs. Criticality thus provides optimal function and behavioral capabilities. We test this hypothesis by examining the influence of brain injury (strokes) on the criticality of neural dynamics estimated at the level of single participants using directly measured individual structural connectomes and whole-brain models. Lesions engender a sub-critical state that recovers over time in parallel with behavior. The improvement of criticality is associated with the re-modeling of specific white-matter connections. We show that personalized whole-brain dynamical models poised at criticality track neural dynamics, alteration post-stroke, and behavior at the level of single participants.

Suggested Citation

  • Rodrigo P. Rocha & Loren Koçillari & Samir Suweis & Michele Filippo De Grazia & Michel Thiebaut Schotten & Marco Zorzi & Maurizio Corbetta, 2022. "Recovery of neural dynamics criticality in personalized whole-brain models of stroke," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30892-6
    DOI: 10.1038/s41467-022-30892-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-30892-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-30892-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Martin Lindquist, 2020. "Neuroimaging results altered by varying analysis pipelines," Nature, Nature, vol. 582(7810), pages 36-37, June.
    2. Michel Thiebaut de Schotten & Chris Foulon & Parashkev Nachev, 2020. "Brain disconnections link structural connectivity with function and behaviour," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    3. Elad Schneidman & Michael J. Berry & Ronen Segev & William Bialek, 2006. "Weak pairwise correlations imply strongly correlated network states in a neural population," Nature, Nature, vol. 440(7087), pages 1007-1012, April.
    4. Ryan N Gutenkunst & Joshua J Waterfall & Fergal P Casey & Kevin S Brown & Christopher R Myers & James P Sethna, 2007. "Universally Sloppy Parameter Sensitivities in Systems Biology Models," PLOS Computational Biology, Public Library of Science, vol. 3(10), pages 1-8, October.
    5. Manfred G Kitzbichler & Marie L Smith & Søren R Christensen & Ed Bullmore, 2009. "Broadband Criticality of Human Brain Network Synchronization," PLOS Computational Biology, Public Library of Science, vol. 5(3), pages 1-13, March.
    6. L. E. Ramsey & J. S. Siegel & C. E. Lang & M. Strube & G. L. Shulman & M. Corbetta, 2017. "Behavioural clusters and predictors of performance during recovery from stroke," Nature Human Behaviour, Nature, vol. 1(3), pages 1-10, March.
    7. Christian Meisel & Alexander Storch & Susanne Hallmeyer-Elgner & Ed Bullmore & Thilo Gross, 2012. "Failure of Adaptive Self-Organized Criticality during Epileptic Seizure Attacks," PLOS Computational Biology, Public Library of Science, vol. 8(1), pages 1-8, January.
    8. S. le Cessie & J. C. van Houwelingen, 1992. "Ridge Estimators in Logistic Regression," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 41(1), pages 191-201, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Valentina Pacella & Victor Nozais & Lia Talozzi & Majd Abdallah & Demian Wassermann & Stephanie J. Forkel & Michel Thiebaut de Schotten, 2024. "The morphospace of the brain-cognition organisation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jasleen Gundh & Awaneesh Singh & R K Brojen Singh, 2015. "Ordering Dynamics in Neuron Activity Pattern Model: An Insight to Brain Functionality," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-16, October.
    2. Korosh Mahmoodi & Bruce J. West & Paolo Grigolini, 2018. "Self-Organized Temporal Criticality: Bottom-Up Resilience versus Top-Down Vulnerability," Complexity, Hindawi, vol. 2018, pages 1-10, March.
    3. Zueva Marina V, 2018. "A New Look at Stimulation Therapy with Complex-Structured Stimuli in Traumatic Brain Injuries," Global Journal of Addiction & Rehabilitation Medicine, Juniper Publishers Inc., vol. 5(1), pages 12-16, January.
    4. Werner, Gerhard, 2013. "Consciousness viewed in the framework of brain phase space dynamics, criticality, and the Renormalization Group," Chaos, Solitons & Fractals, Elsevier, vol. 55(C), pages 3-12.
    5. Christopher J Greenwood & George J Youssef & Primrose Letcher & Jacqui A Macdonald & Lauryn J Hagg & Ann Sanson & Jenn Mcintosh & Delyse M Hutchinson & John W Toumbourou & Matthew Fuller-Tyszkiewicz &, 2020. "A comparison of penalised regression methods for informing the selection of predictive markers," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-14, November.
    6. André Altmann & Michal Rosen-Zvi & Mattia Prosperi & Ehud Aharoni & Hani Neuvirth & Eugen Schülter & Joachim Büch & Daniel Struck & Yardena Peres & Francesca Incardona & Anders Sönnerborg & Rolf Kaise, 2008. "Comparison of Classifier Fusion Methods for Predicting Response to Anti HIV-1 Therapy," PLOS ONE, Public Library of Science, vol. 3(10), pages 1-9, October.
    7. Janns Alvaro Patiño-Saucedo & Paola Patricia Ariza-Colpas & Shariq Butt-Aziz & Marlon Alberto Piñeres-Melo & José Luis López-Ruiz & Roberto Cesar Morales-Ortega & Emiro De-la-hoz-Franco, 2022. "Predictive Model for Human Activity Recognition Based on Machine Learning and Feature Selection Techniques," IJERPH, MDPI, vol. 19(19), pages 1-21, September.
    8. Samuel Bandara & Johannes P Schlöder & Roland Eils & Hans Georg Bock & Tobias Meyer, 2009. "Optimal Experimental Design for Parameter Estimation of a Cell Signaling Model," PLOS Computational Biology, Public Library of Science, vol. 5(11), pages 1-12, November.
    9. Robert G. Sacco, 2019. "The Predictability of Synchronicity Experience: Results from a Survey of Jungian Analysts," International Journal of Psychological Studies, Canadian Center of Science and Education, vol. 11(3), pages 1-46, September.
    10. František Dařena & Jan Přichystal, 2018. "Analysis of the Association between Topics in Online Documents and Stock Price Movements," Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, Mendel University Press, vol. 66(6), pages 1431-1439.
    11. Lipovetsky, Stan, 2018. "Quantum paradigm of probability amplitude and complex utility in entangled discrete choice modeling," Journal of choice modelling, Elsevier, vol. 27(C), pages 62-73.
    12. repec:wyi:journl:002122 is not listed on IDEAS
    13. Mark L Ioffe & Michael J Berry II, 2017. "The structured ‘low temperature’ phase of the retinal population code," PLOS Computational Biology, Public Library of Science, vol. 13(10), pages 1-31, October.
    14. Katarína Bod’ová & Enikő Szép & Nicholas H Barton, 2021. "Dynamic maximum entropy provides accurate approximation of structured population dynamics," PLOS Computational Biology, Public Library of Science, vol. 17(12), pages 1-22, December.
    15. MohammadReza Zahedian & Mahsa Bagherikalhor & Andrey Trufanov & G. Reza Jafari, 2022. "Financial Crisis in the Framework of Non-zero Temperature Balance Theory," Papers 2202.03198, arXiv.org.
    16. Christian Meisel & Alexander Storch & Susanne Hallmeyer-Elgner & Ed Bullmore & Thilo Gross, 2012. "Failure of Adaptive Self-Organized Criticality during Epileptic Seizure Attacks," PLOS Computational Biology, Public Library of Science, vol. 8(1), pages 1-8, January.
    17. Adel Dayarian & Madalena Chaves & Eduardo D Sontag & Anirvan M Sengupta, 2009. "Shape, Size, and Robustness: Feasible Regions in the Parameter Space of Biochemical Networks," PLOS Computational Biology, Public Library of Science, vol. 5(1), pages 1-12, January.
    18. Gaëlle Desbordes & Jianzhong Jin & Chong Weng & Nicholas A Lesica & Garrett B Stanley & Jose-Manuel Alonso, 2008. "Timing Precision in Population Coding of Natural Scenes in the Early Visual System," PLOS Biology, Public Library of Science, vol. 6(12), pages 1-11, December.
    19. Chen, Yu & Yu, Hui & Liu, Chengjie & Xie, Jin & Han, Jun & Dai, Houde, 2024. "Synergistic fusion of physical modeling and data-driven approaches for parameter inference to enzymatic biodiesel production system," Applied Energy, Elsevier, vol. 373(C).
    20. Yasser Roudi & Sheila Nirenberg & Peter E Latham, 2009. "Pairwise Maximum Entropy Models for Studying Large Biological Systems: When They Can Work and When They Can't," PLOS Computational Biology, Public Library of Science, vol. 5(5), pages 1-18, May.
    21. Amrita X Sarkar & Eric A Sobie, 2010. "Regression Analysis for Constraining Free Parameters in Electrophysiological Models of Cardiac Cells," PLOS Computational Biology, Public Library of Science, vol. 6(9), pages 1-11, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30892-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.