IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0141463.html
   My bibliography  Save this article

Ordering Dynamics in Neuron Activity Pattern Model: An Insight to Brain Functionality

Author

Listed:
  • Jasleen Gundh
  • Awaneesh Singh
  • R K Brojen Singh

Abstract

We study the domain ordering kinetics in d = 2 ferromagnets which corresponds to populated neuron activities with both long-ranged interactions, V(r) ∼ r−n and short-ranged interactions. We present the results from comprehensive Monte Carlo (MC) simulations for the nonconserved Ising model with n ≥ 2, interaction range considering near and far neighbors. Our model results could represent the long-ranged neuron kinetics (n ≤ 4) in consistent with the same dynamical behaviour of short-ranged case (n ≥ 4) at far below and near criticality. We found that emergence of fast and slow kinetics of long and short ranged case could imitate the formation of connections among near and distant neurons. The calculated characteristic length scale in long-ranged interaction is found to be n independent (L(t) ∼ t1/(n−2)), whereas short-ranged interaction follows L(t) ∼ t1/2 law and approximately preserve universality in domain kinetics. Further, we did the comparative study of phase ordering near the critical temperature which follows different behaviours of domain ordering near and far critical temperature but follows universal scaling law.

Suggested Citation

  • Jasleen Gundh & Awaneesh Singh & R K Brojen Singh, 2015. "Ordering Dynamics in Neuron Activity Pattern Model: An Insight to Brain Functionality," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-16, October.
  • Handle: RePEc:plo:pone00:0141463
    DOI: 10.1371/journal.pone.0141463
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0141463
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0141463&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0141463?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Daniele Marinazzo & Mario Pellicoro & Guorong Wu & Leonardo Angelini & Jesús M Cortés & Sebastiano Stramaglia, 2014. "Information Transfer and Criticality in the Ising Model on the Human Connectome," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-7, April.
    2. Elad Schneidman & Michael J. Berry & Ronen Segev & William Bialek, 2006. "Weak pairwise correlations imply strongly correlated network states in a neural population," Nature, Nature, vol. 440(7087), pages 1007-1012, April.
    3. R. Chialvo, Dante, 2004. "Critical brain networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 340(4), pages 756-765.
    4. Christian Meisel & Alexander Storch & Susanne Hallmeyer-Elgner & Ed Bullmore & Thilo Gross, 2012. "Failure of Adaptive Self-Organized Criticality during Epileptic Seizure Attacks," PLOS Computational Biology, Public Library of Science, vol. 8(1), pages 1-8, January.
    5. Min Fu & Xinzhu Yu & Ju Lu & Yi Zuo, 2012. "Repetitive motor learning induces coordinated formation of clustered dendritic spines in vivo," Nature, Nature, vol. 483(7387), pages 92-95, March.
    6. Daniele Marinazzo & Guorong Wu & Mario Pellicoro & Leonardo Angelini & Sebastiano Stramaglia, 2012. "Information Flow in Networks and the Law of Diminishing Marginal Returns: Evidence from Modeling and Human Electroencephalographic Recordings," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-9, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rodrigo P. Rocha & Loren Koçillari & Samir Suweis & Michele Filippo De Grazia & Michel Thiebaut Schotten & Marco Zorzi & Maurizio Corbetta, 2022. "Recovery of neural dynamics criticality in personalized whole-brain models of stroke," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    2. Werner, Gerhard, 2013. "Consciousness viewed in the framework of brain phase space dynamics, criticality, and the Renormalization Group," Chaos, Solitons & Fractals, Elsevier, vol. 55(C), pages 3-12.
    3. Lipovetsky, Stan, 2018. "Quantum paradigm of probability amplitude and complex utility in entangled discrete choice modeling," Journal of choice modelling, Elsevier, vol. 27(C), pages 62-73.
    4. Guan, Sihai & Wan, Dongyu & Yang, Yanmiao & Biswal, Bharat, 2022. "Sources of multifractality of the brain rs-fMRI signal," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    5. Mark L Ioffe & Michael J Berry II, 2017. "The structured ‘low temperature’ phase of the retinal population code," PLOS Computational Biology, Public Library of Science, vol. 13(10), pages 1-31, October.
    6. Katarína Bod’ová & Enikő Szép & Nicholas H Barton, 2021. "Dynamic maximum entropy provides accurate approximation of structured population dynamics," PLOS Computational Biology, Public Library of Science, vol. 17(12), pages 1-22, December.
    7. MohammadReza Zahedian & Mahsa Bagherikalhor & Andrey Trufanov & G. Reza Jafari, 2022. "Financial Crisis in the Framework of Non-zero Temperature Balance Theory," Papers 2202.03198, arXiv.org.
    8. Gaëlle Desbordes & Jianzhong Jin & Chong Weng & Nicholas A Lesica & Garrett B Stanley & Jose-Manuel Alonso, 2008. "Timing Precision in Population Coding of Natural Scenes in the Early Visual System," PLOS Biology, Public Library of Science, vol. 6(12), pages 1-11, December.
    9. Yasser Roudi & Sheila Nirenberg & Peter E Latham, 2009. "Pairwise Maximum Entropy Models for Studying Large Biological Systems: When They Can Work and When They Can't," PLOS Computational Biology, Public Library of Science, vol. 5(5), pages 1-18, May.
    10. Maulana, Ardian & Situngkir, Hokky, 2015. "Korelasi Bebas-skala dalam Studi Geo-politik Pemilihan [Scale-free correlation within Geopolitics of Election Studies]," MPRA Paper 66351, University Library of Munich, Germany.
    11. Alfaro, Carlos A. & Valencia, Carlos E. & Vargas, Marcos C., 2023. "Computing sandpile configurations using integer linear programming," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    12. Zhang, Qi & Deng, Ronghao & Ding, Kaixing & Li, Meizhu, 2024. "Structural analysis and the sum of nodes’ betweenness centrality in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
    13. Hideaki Shimazaki & Shun-ichi Amari & Emery N Brown & Sonja Grün, 2012. "State-Space Analysis of Time-Varying Higher-Order Spike Correlation for Multiple Neural Spike Train Data," PLOS Computational Biology, Public Library of Science, vol. 8(3), pages 1-27, March.
    14. Timothy R Lezon & Ivet Bahar, 2010. "Using Entropy Maximization to Understand the Determinants of Structural Dynamics beyond Native Contact Topology," PLOS Computational Biology, Public Library of Science, vol. 6(6), pages 1-12, June.
    15. Xiaoyuan Liu & Hayato Ushijima-Mwesigwa & Avradip Mandal & Sarvagya Upadhyay & Ilya Safro & Arnab Roy, 2022. "Leveraging special-purpose hardware for local search heuristics," Computational Optimization and Applications, Springer, vol. 82(1), pages 1-29, May.
    16. Sacha Jennifer van Albada & Moritz Helias & Markus Diesmann, 2015. "Scalability of Asynchronous Networks Is Limited by One-to-One Mapping between Effective Connectivity and Correlations," PLOS Computational Biology, Public Library of Science, vol. 11(9), pages 1-37, September.
    17. Sahar Gelfman & Quanli Wang & Yi-Fan Lu & Diana Hall & Christopher D Bostick & Ryan Dhindsa & Matt Halvorsen & K Melodi McSweeney & Ellese Cotterill & Tom Edinburgh & Michael A Beaumont & Wayne N Fran, 2018. "meaRtools: An R package for the analysis of neuronal networks recorded on microelectrode arrays," PLOS Computational Biology, Public Library of Science, vol. 14(10), pages 1-20, October.
    18. Jason S Prentice & Olivier Marre & Mark L Ioffe & Adrianna R Loback & Gašper Tkačik & Michael J Berry II, 2016. "Error-Robust Modes of the Retinal Population Code," PLOS Computational Biology, Public Library of Science, vol. 12(11), pages 1-32, November.
    19. Zhiwei Xu & Erez Geron & Luis M. Pérez-Cuesta & Yang Bai & Wen-Biao Gan, 2023. "Generalized extinction of fear memory depends on co-allocation of synaptic plasticity in dendrites," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    20. Zare, Marzieh & Grigolini, Paolo, 2013. "Criticality and avalanches in neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 55(C), pages 80-94.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0141463. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.