IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-30847-x.html
   My bibliography  Save this article

Establishment of mouse model of inherited PIGO deficiency and therapeutic potential of AAV-based gene therapy

Author

Listed:
  • Ryoko Kuwayama

    (Osaka University
    Osaka University Graduate School of Medicine)

  • Keiichiro Suzuki

    (Osaka University
    Osaka University
    Osaka University)

  • Jun Nakamura

    (Osaka University)

  • Emi Aizawa

    (Osaka University)

  • Yoshichika Yoshioka

    (Osaka University
    National Institute of Information and Communications Technology (NICT) and Osaka University
    Osaka University)

  • Masahito Ikawa

    (Osaka University)

  • Shin Nabatame

    (Osaka University Graduate School of Medicine)

  • Ken-ichi Inoue

    (Kyoto University)

  • Yoshiari Shimmyo

    (Asubio Pharma Co., Ltd)

  • Keiichi Ozono

    (Osaka University Graduate School of Medicine)

  • Taroh Kinoshita

    (Osaka University
    Osaka University)

  • Yoshiko Murakami

    (Osaka University)

Abstract

Inherited glycosylphosphatidylinositol (GPI) deficiency (IGD) is caused by mutations in GPI biosynthesis genes. The mechanisms of its systemic, especially neurological, symptoms are not clarified and fundamental therapy has not been established. Here, we report establishment of mouse models of IGD caused by PIGO mutations as well as development of effective gene therapy. As the clinical manifestations of IGD are systemic and lifelong lasting, we treated the mice with adeno-associated virus for homology-independent knock-in as well as extra-chromosomal expression of Pigo cDNA. Significant amelioration of neuronal phenotypes and growth defect was achieved, opening a new avenue for curing IGDs.

Suggested Citation

  • Ryoko Kuwayama & Keiichiro Suzuki & Jun Nakamura & Emi Aizawa & Yoshichika Yoshioka & Masahito Ikawa & Shin Nabatame & Ken-ichi Inoue & Yoshiari Shimmyo & Keiichi Ozono & Taroh Kinoshita & Yoshiko Mur, 2022. "Establishment of mouse model of inherited PIGO deficiency and therapeutic potential of AAV-based gene therapy," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30847-x
    DOI: 10.1038/s41467-022-30847-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-30847-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-30847-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Keiichiro Suzuki & Yuji Tsunekawa & Reyna Hernandez-Benitez & Jun Wu & Jie Zhu & Euiseok J. Kim & Fumiyuki Hatanaka & Mako Yamamoto & Toshikazu Araoka & Zhe Li & Masakazu Kurita & Tomoaki Hishida & Mo, 2016. "In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration," Nature, Nature, vol. 540(7631), pages 144-149, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Takeshi Hori & Hiroaki Okae & Shun Shibata & Norio Kobayashi & Eri H. Kobayashi & Akira Oike & Asato Sekiya & Takahiro Arima & Hirokazu Kaji, 2024. "Trophoblast stem cell-based organoid models of the human placental barrier," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    2. Jun Huang & David Rowe & Pratima Subedi & Wei Zhang & Tyler Suelter & Barbara Valent & David E. Cook, 2022. "CRISPR-Cas12a induced DNA double-strand breaks are repaired by multiple pathways with different mutation profiles in Magnaporthe oryzae," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    3. Raed Ibraheim & Phillip W. L. Tai & Aamir Mir & Nida Javeed & Jiaming Wang & Tomás C. Rodríguez & Suk Namkung & Samantha Nelson & Eraj Shafiq Khokhar & Esther Mintzer & Stacy Maitland & Zexiang Chen &, 2021. "Self-inactivating, all-in-one AAV vectors for precision Cas9 genome editing via homology-directed repair in vivo," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    4. Xiangjun He & Zhenjie Zhang & Junyi Xue & Yaofeng Wang & Siqi Zhang & Junkang Wei & Chenzi Zhang & Jue Wang & Brian Anugerah Urip & Chun Christopher Ngan & Junjiang Sun & Yuefeng Li & Zhiqian Lu & Hui, 2022. "Low-dose AAV-CRISPR-mediated liver-specific knock-in restored hemostasis in neonatal hemophilia B mice with subtle antibody response," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    5. Martin Peterka & Nina Akrap & Songyuan Li & Sandra Wimberger & Pei-Pei Hsieh & Dmitrii Degtev & Burcu Bestas & Jack Barr & Stijn Plassche & Patricia Mendoza-Garcia & Saša Šviković & Grzegorz Sienski &, 2022. "Harnessing DSB repair to promote efficient homology-dependent and -independent prime editing," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    6. Akiko Tomita & Hiroyuki Sasanuma & Tomoo Owa & Yuka Nakazawa & Mayuko Shimada & Takahiro Fukuoka & Tomoo Ogi & Shinichiro Nakada, 2023. "Inducing multiple nicks promotes interhomolog homologous recombination to correct heterozygous mutations in somatic cells," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    7. Yuki Ogawa & Brian C. Lim & Shanu George & Juan A. Oses-Prieto & Joshua M. Rasband & Yael Eshed-Eisenbach & Hamdan Hamdan & Supna Nair & Francesco Boato & Elior Peles & Alma L. Burlingame & Linda Aels, 2023. "Antibody-directed extracellular proximity biotinylation reveals that Contactin-1 regulates axo-axonic innervation of axon initial segments," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    8. Matteo Ciciani & Michele Demozzi & Eleonora Pedrazzoli & Elisabetta Visentin & Laura Pezzè & Lorenzo Federico Signorini & Aitor Blanco-Miguez & Moreno Zolfo & Francesco Asnicar & Antonio Casini & Anna, 2022. "Automated identification of sequence-tailored Cas9 proteins using massive metagenomic data," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    9. Fumiyuki Hatanaka & Keiichiro Suzuki & Kensaku Shojima & Jingting Yu & Yuta Takahashi & Akihisa Sakamoto & Javier Prieto & Maxim Shokhirev & Estrella Nuñez Delicado & Concepcion Rodriguez Esteban & Ju, 2024. "Therapeutic strategy for spinal muscular atrophy by combining gene supplementation and genome editing," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    10. Patrizia Tornabene & Rita Ferla & Manel Llado-Santaeularia & Miriam Centrulo & Margherita Dell’Anno & Federica Esposito & Elena Marrocco & Emanuela Pone & Renato Minopoli & Carolina Iodice & Edoardo N, 2022. "Therapeutic homology-independent targeted integration in retina and liver," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    11. Zengpeng Han & Nengsong Luo & Wenyu Ma & Xiaodong Liu & Yuxiang Cai & Jiaxin Kou & Jie Wang & Lei Li & Siqi Peng & Zihong Xu & Wen Zhang & Yuxiang Qiu & Yang Wu & Chaohui Ye & Kunzhang Lin & Fuqiang X, 2023. "AAV11 enables efficient retrograde targeting of projection neurons and enhances astrocyte-directed transduction," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    12. Maria Pallarès-Masmitjà & Dimitrije Ivančić & Júlia Mir-Pedrol & Jessica Jaraba-Wallace & Tommaso Tagliani & Baldomero Oliva & Amal Rahmeh & Avencia Sánchez-Mejías & Marc Güell, 2021. "Find and cut-and-transfer (FiCAT) mammalian genome engineering," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    13. Zhepu Ruan & Kai Chen & Weimiao Cao & Lei Meng & Bingang Yang & Mengjun Xu & Youwen Xing & Pengfa Li & Shiri Freilich & Chen Chen & Yanzheng Gao & Jiandong Jiang & Xihui Xu, 2024. "Engineering natural microbiomes toward enhanced bioremediation by microbiome modeling," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    14. Sandra Wimberger & Nina Akrap & Mike Firth & Johan Brengdahl & Susanna Engberg & Marie K. Schwinn & Michael R. Slater & Anders Lundin & Pei-Pei Hsieh & Songyuan Li & Silvia Cerboni & Jonathan Sumner &, 2023. "Simultaneous inhibition of DNA-PK and Polϴ improves integration efficiency and precision of genome editing," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    15. Patricia R. Pitrez & Luis M. Monteiro & Oliver Borgogno & Xavier Nissan & Jerome Mertens & Lino Ferreira, 2024. "Cellular reprogramming as a tool to model human aging in a dish," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    16. Xiaoguang Pan & Kunli Qu & Hao Yuan & Xi Xiang & Christian Anthon & Liubov Pashkova & Xue Liang & Peng Han & Giulia I. Corsi & Fengping Xu & Ping Liu & Jiayan Zhong & Yan Zhou & Tao Ma & Hui Jiang & J, 2022. "Massively targeted evaluation of therapeutic CRISPR off-targets in cells," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    17. Trevor Weiss & Jitesh Kumar & Chuan Chen & Shengsong Guo & Oliver Schlegel & John Lutterman & Kun Ling & Feng Zhang, 2024. "Dual activities of an X-family DNA polymerase regulate CRISPR-induced insertional mutagenesis across species," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    18. Xiang Meng & Ruixuan Jia & Xinping Zhao & Fan Zhang & Shaohong Chen & Shicheng Yu & Xiaozhen Liu & Hongliang Dou & Xuefeng Feng & Jinlu Zhang & Ni Wang & Boling Xu & Liping Yang, 2024. "In vivo genome editing via CRISPR/Cas9-mediated homology-independent targeted integration for Bietti crystalline corneoretinal dystrophy treatment," Nature Communications, Nature, vol. 15(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30847-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.