IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-30046-8.html
   My bibliography  Save this article

Evanescent scattering imaging of single protein binding kinetics and DNA conformation changes

Author

Listed:
  • Pengfei Zhang

    (Arizona State University)

  • Lei Zhou

    (Arizona State University)

  • Rui Wang

    (Arizona State University)

  • Xinyu Zhou

    (Arizona State University
    Arizona State University)

  • Jiapei Jiang

    (Arizona State University
    Arizona State University)

  • Zijian Wan

    (Arizona State University
    Arizona State University)

  • Shaopeng Wang

    (Arizona State University
    Arizona State University)

Abstract

Evanescent illumination has been widely used to detect single biological macromolecules because it can notably enhance light-analyte interaction. However, the current evanescent single-molecule detection system usually requires specially designed microspheres or nanomaterials. Here we show that single protein detection and imaging can be realized on a plain glass surface by imaging the interference between the evanescent lights scattered by the single proteins and by the natural roughness of the cover glass. This allows us to quantify the sizes of single proteins, characterize the protein–antibody interactions at the single-molecule level, and analyze the heterogeneity of single protein binding behaviors. In addition, owing to the exponential distribution of evanescent field intensity, the evanescent imaging system can track the analyte axial movement with high resolution, which can be used to analyze the DNA conformation changes, providing one solution for detecting small molecules, such as microRNA. This work demonstrates a label-free single protein imaging method with ordinary consumables and may pave a road for detecting small biological molecules.

Suggested Citation

  • Pengfei Zhang & Lei Zhou & Rui Wang & Xinyu Zhou & Jiapei Jiang & Zijian Wan & Shaopeng Wang, 2022. "Evanescent scattering imaging of single protein binding kinetics and DNA conformation changes," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30046-8
    DOI: 10.1038/s41467-022-30046-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-30046-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-30046-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Amy E. Goodling & Sara Nagelberg & Bryan Kaehr & Caleb H. Meredith & Seong Ik Cheon & Ashley P. Saunders & Mathias Kolle & Lauren D. Zarzar, 2019. "Colouration by total internal reflection and interference at microscale concave interfaces," Nature, Nature, vol. 566(7745), pages 523-527, February.
    2. Thomas Schlichthaerle & Caroline Lindner & Ralf Jungmann, 2021. "Super-resolved visualization of single DNA-based tension sensors in cell adhesion," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    3. Guangzhong Ma & Zijian Wan & Yunze Yang & Pengfei Zhang & Shaopeng Wang & Nongjian Tao, 2020. "Optical imaging of single-protein size, charge, mobility, and binding," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    4. Marek Piliarik & Vahid Sandoghdar, 2014. "Direct optical sensing of single unlabelled proteins and super-resolution imaging of their binding sites," Nature Communications, Nature, vol. 5(1), pages 1-8, December.
    5. Kaijie Ma & Yunong Zhang & Le Liu & Jingyu Xi & Xinping Qiu & Tian Guan & Yonghong He, 2019. "In situ mapping of activity distribution and oxygen evolution reaction in vanadium flow batteries," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Heming Liu & Ruikuan Xie & Yuting Luo & Zhicheng Cui & Qiangmin Yu & Zhiqiang Gao & Zhiyuan Zhang & Fengning Yang & Xin Kang & Shiyu Ge & Shaohai Li & Xuefeng Gao & Guoliang Chai & Le Liu & Bilu Liu, 2022. "Dual interfacial engineering of a Chevrel phase electrode material for stable hydrogen evolution at 2500 mA cm−2," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Yeon Ui Lee & Shilong Li & G. Bimananda M. Wisna & Junxiang Zhao & Yuan Zeng & Andrea R. Tao & Zhaowei Liu, 2022. "Hyperbolic material enhanced scattering nanoscopy for label-free super-resolution imaging," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. Alexia Stollmann & Jose Garcia-Guirado & Jae-Sang Hong & Pascal Rüedi & Hyungsoon Im & Hakho Lee & Jaime Ortega Arroyo & Romain Quidant, 2024. "Molecular fingerprinting of biological nanoparticles with a label-free optofluidic platform," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    4. Francis Schuknecht & Karol Kołątaj & Michael Steinberger & Tim Liedl & Theobald Lohmueller, 2023. "Accessible hotspots for single-protein SERS in DNA-origami assembled gold nanorod dimers with tip-to-tip alignment," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Michelle Küppers & David Albrecht & Anna D. Kashkanova & Jennifer Lühr & Vahid Sandoghdar, 2023. "Confocal interferometric scattering microscopy reveals 3D nanoscopic structure and dynamics in live cells," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    6. Larissa Kohler & Matthias Mader & Christian Kern & Martin Wegener & David Hunger, 2021. "Tracking Brownian motion in three dimensions and characterization of individual nanoparticles using a fiber-based high-finesse microcavity," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    7. Jin-Sung Park & Il-Buem Lee & Hyeon-Min Moon & Seok-Cheol Hong & Minhaeng Cho, 2023. "Long-term cargo tracking reveals intricate trafficking through active cytoskeletal networks in the crowded cellular environment," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30046-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.