IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-13147-9.html
   My bibliography  Save this article

In situ mapping of activity distribution and oxygen evolution reaction in vanadium flow batteries

Author

Listed:
  • Kaijie Ma

    (Tsinghua University
    Tsinghua University
    Tsinghua University)

  • Yunong Zhang

    (Tsinghua University)

  • Le Liu

    (Tsinghua University)

  • Jingyu Xi

    (Tsinghua University)

  • Xinping Qiu

    (Tsinghua University)

  • Tian Guan

    (Tsinghua University)

  • Yonghong He

    (Tsinghua University
    Tsinghua University)

Abstract

Understanding spatial distribution difference and reaction kinetics of the electrode is vital for enhancing the electrochemical reaction efficiency. Here, we report a total internal reflection imaging sensor without background current interference to map local current distribution of the electrode in a vanadium redox flow battery during cyclic voltammetry (CV), enabling mapping of the activity and reversibility distribution with the spatial resolution of a single fiber. Three graphite felts with different activity are compared to verify its feasibility. In long-term cyclic voltammetry, the oxygen evolution reaction is proved to enhance activity distribution, and homogeneity of the electrode and its bubble kinetics with periodic fluctuation is consistent with the cyclic voltammetry curve, enabling the onset oxygen evolution/reduction potential determination. Higher activity and irreversibility distribution of the electrode is found in favor of the oxygen evolution reaction. This sensor has potential to detect in situ, among other processes, electrochemical reactions in flow batteries, water splitting, electrocatalysis and electrochemical corrosion.

Suggested Citation

  • Kaijie Ma & Yunong Zhang & Le Liu & Jingyu Xi & Xinping Qiu & Tian Guan & Yonghong He, 2019. "In situ mapping of activity distribution and oxygen evolution reaction in vanadium flow batteries," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-13147-9
    DOI: 10.1038/s41467-019-13147-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-13147-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-13147-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Heming Liu & Ruikuan Xie & Yuting Luo & Zhicheng Cui & Qiangmin Yu & Zhiqiang Gao & Zhiyuan Zhang & Fengning Yang & Xin Kang & Shiyu Ge & Shaohai Li & Xuefeng Gao & Guoliang Chai & Le Liu & Bilu Liu, 2022. "Dual interfacial engineering of a Chevrel phase electrode material for stable hydrogen evolution at 2500 mA cm−2," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Pengfei Zhang & Lei Zhou & Rui Wang & Xinyu Zhou & Jiapei Jiang & Zijian Wan & Shaopeng Wang, 2022. "Evanescent scattering imaging of single protein binding kinetics and DNA conformation changes," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-13147-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.