IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-22606-1.html
   My bibliography  Save this article

Super-resolved visualization of single DNA-based tension sensors in cell adhesion

Author

Listed:
  • Thomas Schlichthaerle

    (Ludwig Maximilian University
    Max Planck Institute of Biochemistry)

  • Caroline Lindner

    (Ludwig Maximilian University
    Max Planck Institute of Biochemistry)

  • Ralf Jungmann

    (Ludwig Maximilian University
    Max Planck Institute of Biochemistry)

Abstract

Cell-extracellular matrix sensing plays a crucial role in cellular behavior and leads to the formation of a macromolecular protein complex called the focal adhesion. Despite their importance in cellular decision making, relatively little is known about cell-matrix interactions and the intracellular transduction of an initial ligand-receptor binding event on the single-molecule level. Here, we combine cRGD-ligand-decorated DNA tension sensors with DNA-PAINT super-resolution microscopy to study the mechanical engagement of single integrin receptors and the downstream influence on actin bundling. We uncover that integrin receptor clustering is governed by a non-random organization with complexes spaced at 20–30 nm distances. The DNA-based tension sensor and analysis framework provide powerful tools to study a multitude of receptor-ligand interactions where forces are involved in ligand-receptor binding.

Suggested Citation

  • Thomas Schlichthaerle & Caroline Lindner & Ralf Jungmann, 2021. "Super-resolved visualization of single DNA-based tension sensors in cell adhesion," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-22606-1
    DOI: 10.1038/s41467-021-22606-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-22606-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-22606-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pengfei Zhang & Lei Zhou & Rui Wang & Xinyu Zhou & Jiapei Jiang & Zijian Wan & Shaopeng Wang, 2022. "Evanescent scattering imaging of single protein binding kinetics and DNA conformation changes," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-22606-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.