IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i14p3218-d1199778.html
   My bibliography  Save this article

The Evolutionary Mechanism of Formation of Biosphere Closure

Author

Listed:
  • Sergey Bartsev

    (Institute of Biophysics of Siberian Branch, Russian Academy of Sciences, Federal Research Center “Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences”, 660036 Krasnoyarsk, Russia)

  • Andrey Degermendzhi

    (Institute of Biophysics of Siberian Branch, Russian Academy of Sciences, Federal Research Center “Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences”, 660036 Krasnoyarsk, Russia)

Abstract

In accordance with the ideas of V.I. Vernadsky, the Earth’s biosphere can exist only because of the high degree of closure of the cyclic matter transformations carried out by all living organisms by using the energy from the Sun. In the course of its evolution, the Earth’s biosphere has undergone a number of cardinal transformations, but, at least for the last 20 million years, the gas composition of the atmosphere, and primarily the concentration of carbon dioxide, has remained practically unchanged. Nevertheless, the high degree of closure of material flows in the Earth’s biosphere seems paradoxical, since closure is not an adaptive feature of an individual undergoing natural selection for traits that give an advantage here and now (the Vernadsky–Darwin paradox). The stages in the formation of the closure of the Earth’s biosphere are considered in the context of four epochs that differ in the energy available to living organisms: (1) geochemical energy; (2) solar energy; (3) energy of oxidative phosphorylation; and (4) consumption of living flesh, predation. The paper considers possible options for resolving the VD paradox using as the example models of closed ecological systems (CES) with low species diversity. The fundamental inapplicability of ecological models with rigid metabolism for the description of CES is shown. Three mechanisms for resolving the VD paradox are proposed and the conditions for their implementation are assessed: (1) a stochastic mechanism: random selection of closing organisms (decomposers) with the corresponding stoichiometric ratios; (2) changing the consumption stoichiometry by switching catabolic pathways to different types of substances (proteins, fats, carbohydrates); and (3) changing the consumption stoichiometry by choosing food, depending on the state of internal nutrient pools. The present study leads to the conclusion that the Vernadsky–Darwin paradox can be resolved in nature by combining the mechanisms that simultaneously provide both a current competitive advantage and the ability to close trophic chains with a wide variation in the composition of material flows.

Suggested Citation

  • Sergey Bartsev & Andrey Degermendzhi, 2023. "The Evolutionary Mechanism of Formation of Biosphere Closure," Mathematics, MDPI, vol. 11(14), pages 1-22, July.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:14:p:3218-:d:1199778
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/14/3218/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/14/3218/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jef Huisman & Franz J. Weissing, 1999. "Biodiversity of plankton by species oscillations and chaos," Nature, Nature, vol. 402(6760), pages 407-410, November.
    2. Jonathan M. Levine & Janneke HilleRisLambers, 2009. "The importance of niches for the maintenance of species diversity," Nature, Nature, vol. 461(7261), pages 254-257, September.
    3. Bartsev, Sergey I. & Degermendzhi, Andrey G. & Erokhin, Dmitry V., 2008. "Principle of the worst scenario in the modelling past and future of biosphere dynamics," Ecological Modelling, Elsevier, vol. 216(2), pages 160-171.
    4. Paul N. Pearson & Martin R. Palmer, 2000. "Atmospheric carbon dioxide concentrations over the past 60 million years," Nature, Nature, vol. 406(6797), pages 695-699, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Zeyu & Bearup, Daniel & Guo, Guanming & Zhang, Helin & Liao, Jinbao, 2022. "Competition modes determine ecosystem stability in rock–paper–scissors games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    2. Rashleigh, Brenda & DeAngelis, Donald L., 2007. "Conditions for coexistence of freshwater mussel species via partitioning of fish host resources," Ecological Modelling, Elsevier, vol. 201(2), pages 171-178.
    3. Dandan Liu & Anmin Huang & Dewei Yang & Jianyi Lin & Jiahui Liu, 2021. "Niche-Driven Socio-Environmental Linkages and Regional Sustainable Development," Sustainability, MDPI, vol. 13(3), pages 1-17, January.
    4. Pavão, D.C. & Elias, R.B. & Silva, L., 2019. "Comparison of discrete and continuum community models: Insights from numerical ecology and Bayesian methods applied to Azorean plant communities," Ecological Modelling, Elsevier, vol. 402(C), pages 93-106.
    5. David García-Callejas & Ignasi Bartomeus & Oscar Godoy, 2021. "The spatial configuration of biotic interactions shapes coexistence-area relationships in an annual plant community," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    6. Chunshan Zhou & Jing Chen & Shaojian Wang, 2018. "Does Migrant Status and Household Registration Matter? Examining the Effects of City Size on Self-Rated Health," Sustainability, MDPI, vol. 10(7), pages 1-15, June.
    7. Marten Scheffer & Remi Vergnon & Egbert H van Nes & Jan G M Cuppen & Edwin T H M Peeters & Remko Leijs & Anders N Nilsson, 2015. "The Evolution of Functionally Redundant Species; Evidence from Beetles," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-10, October.
    8. Wojciech Bierza & Joanna Czarnecka & Agnieszka Błońska & Agnieszka Kompała-Bąba & Agnieszka Hutniczak & Bartosz Jendrzejek & Jawdat Bakr & Andrzej M. Jagodziński & Dariusz Prostański & Gabriela Woźnia, 2023. "Plant Diversity and Species Composition in Relation to Soil Enzymatic Activity in the Novel Ecosystems of Urban–Industrial Landscapes," Sustainability, MDPI, vol. 15(9), pages 1-18, April.
    9. Anna Y. Alekseeva & Anneloes E. Groenenboom & Eddy J. Smid & Sijmen E. Schoustra, 2021. "Eco-Evolutionary Dynamics in Microbial Communities from Spontaneous Fermented Foods," IJERPH, MDPI, vol. 18(19), pages 1-19, September.
    10. Luigi Dallai & Zachary D. Sharp, 2024. "A tipping point in stable isotope composition of Antarctic meteoric waters during Cenozoic glaciation," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    11. Hairong Lin & Chunhua Wang & Fei Yu & Jingru Sun & Sichun Du & Zekun Deng & Quanli Deng, 2023. "A Review of Chaotic Systems Based on Memristive Hopfield Neural Networks," Mathematics, MDPI, vol. 11(6), pages 1-18, March.
    12. Inga Dirks & Juliane Streit & Catharina Meinen, 2021. "Above and Belowground Relative Yield Total of Clover–Ryegrass Mixtures Exceed One in Wet and Dry Years," Agriculture, MDPI, vol. 11(3), pages 1-15, March.
    13. López-Ruiz, Ricardo & Fournier-Prunaret, Danièle, 2009. "Periodic and chaotic events in a discrete model of logistic type for the competitive interaction of two species," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 334-347.
    14. Trobia, José & de Souza, Silvio L.T. & dos Santos, Margarete A. & Szezech, José D. & Batista, Antonio M. & Borges, Rafael R. & Pereira, Leandro da S. & Protachevicz, Paulo R. & Caldas, Iberê L. & Iaro, 2022. "On the dynamical behaviour of a glucose-insulin model," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    15. Mulderij, Gabi & Van Nes, Egbert H. & Van Donk, Ellen, 2007. "Macrophyte–phytoplankton interactions: The relative importance of allelopathy versus other factors," Ecological Modelling, Elsevier, vol. 204(1), pages 85-92.
    16. Chen, Chao & Xu, Huifang & Jiang, Qingbin & Lin, Zhan, 2021. "Rational design of silicas with meso-macroporosity as supports for high-performance solid amine CO2 adsorbents," Energy, Elsevier, vol. 214(C).
    17. Sudakov, Ivan & Vakulenko, Sergey A. & Bruun, John T., 2022. "Stochastic physics of species extinctions in a large population," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).
    18. Arce, G.L.A.F. & Carvalho, J.A. & Nascimento, L.F.C., 2014. "A time series sequestration and storage model of atmospheric carbon dioxide," Ecological Modelling, Elsevier, vol. 272(C), pages 59-67.
    19. Malay Banerjee & Nayana Mukherjee & Vitaly Volpert, 2018. "Prey-Predator Model with a Nonlocal Bistable Dynamics of Prey," Mathematics, MDPI, vol. 6(3), pages 1-13, March.
    20. Cagle, Sierra E. & Roelke, Daniel L., 2024. "Chaotic mixotroph dynamics arise with nutrient loading: Implications for mixotrophy as a harmful bloom forming mechanism," Ecological Modelling, Elsevier, vol. 492(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:14:p:3218-:d:1199778. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.