IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-28994-2.html
   My bibliography  Save this article

A kinetic model predicts SpCas9 activity, improves off-target classification, and reveals the physical basis of targeting fidelity

Author

Listed:
  • Behrouz Eslami-Mossallam

    (Delft University of Technology
    TNO Building and Construction Research)

  • Misha Klein

    (Delft University of Technology
    Vrije Universiteit Amsterdam)

  • Constantijn V. D. Smagt

    (Delft University of Technology
    Vrije Universiteit Amsterdam)

  • Koen V. D. Sanden

    (Delft University of Technology)

  • Stephen K. Jones

    (University of Texas at Austin
    University of Texas at Austin
    University of Texas at Austin
    Vilnius University)

  • John A. Hawkins

    (University of Texas at Austin
    University of Texas at Austin
    University of Texas at Austin
    University of Texas at Austin)

  • Ilya J. Finkelstein

    (University of Texas at Austin
    University of Texas at Austin
    University of Texas at Austin)

  • Martin Depken

    (Delft University of Technology)

Abstract

The S. pyogenes (Sp) Cas9 endonuclease is an important gene-editing tool. SpCas9 is directed to target sites based on complementarity to a complexed single-guide RNA (sgRNA). However, SpCas9-sgRNA also binds and cleaves genomic off-targets with only partial complementarity. To date, we lack the ability to predict cleavage and binding activity quantitatively, and rely on binary classification schemes to identify strong off-targets. We report a quantitative kinetic model that captures the SpCas9-mediated strand-replacement reaction in free-energy terms. The model predicts binding and cleavage activity as a function of time, target, and experimental conditions. Trained and validated on high-throughput bulk-biochemical data, our model predicts the intermediate R-loop state recently observed in single-molecule experiments, as well as the associated conversion rates. Finally, we show that our quantitative activity predictor can be reduced to a binary off-target classifier that outperforms the established state-of-the-art. Our approach is extensible, and can characterize any CRISPR-Cas nuclease – benchmarking natural and future high-fidelity variants against SpCas9; elucidating determinants of CRISPR fidelity; and revealing pathways to increased specificity and efficiency in engineered systems.

Suggested Citation

  • Behrouz Eslami-Mossallam & Misha Klein & Constantijn V. D. Smagt & Koen V. D. Sanden & Stephen K. Jones & John A. Hawkins & Ilya J. Finkelstein & Martin Depken, 2022. "A kinetic model predicts SpCas9 activity, improves off-target classification, and reveals the physical basis of targeting fidelity," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28994-2
    DOI: 10.1038/s41467-022-28994-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-28994-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-28994-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Winston X. Yan & Reza Mirzazadeh & Silvano Garnerone & David Scott & Martin W. Schneider & Tomasz Kallas & Joaquin Custodio & Erik Wernersson & Yinqing Li & Linyi Gao & Yana Federova & Bernd Zetsche &, 2017. "BLISS is a versatile and quantitative method for genome-wide profiling of DNA double-strand breaks," Nature Communications, Nature, vol. 8(1), pages 1-9, August.
    2. Carolin Anders & Ole Niewoehner & Alessia Duerst & Martin Jinek, 2014. "Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease," Nature, Nature, vol. 513(7519), pages 569-573, September.
    3. Grégoire Cullot & Julian Boutin & Jérôme Toutain & Florence Prat & Perrine Pennamen & Caroline Rooryck & Martin Teichmann & Emilie Rousseau & Isabelle Lamrissi-Garcia & Véronique Guyonnet-Duperat & Al, 2019. "CRISPR-Cas9 genome editing induces megabase-scale chromosomal truncations," Nature Communications, Nature, vol. 10(1), pages 1-14, December.
    4. Samuel H. Sternberg & Benjamin LaFrance & Matias Kaplan & Jennifer A. Doudna, 2015. "Conformational control of DNA target cleavage by CRISPR–Cas9," Nature, Nature, vol. 527(7576), pages 110-113, November.
    5. Janice S. Chen & Yavuz S. Dagdas & Benjamin P. Kleinstiver & Moira M. Welch & Alexander A. Sousa & Lucas B. Harrington & Samuel H. Sternberg & J. Keith Joung & Ahmet Yildiz & Jennifer A. Doudna, 2017. "Enhanced proofreading governs CRISPR–Cas9 targeting accuracy," Nature, Nature, vol. 550(7676), pages 407-410, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qinchang Chen & Guohui Chuai & Haihang Zhang & Jin Tang & Liwen Duan & Huan Guan & Wenhui Li & Wannian Li & Jiaying Wen & Erwei Zuo & Qing Zhang & Qi Liu, 2023. "Genome-wide CRISPR off-target prediction and optimization using RNA-DNA interaction fingerprints," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    2. Marius Rutkauskas & Inga Songailiene & Patrick Irmisch & Felix E. Kemmerich & Tomas Sinkunas & Virginijus Siksnys & Ralf Seidel, 2022. "A quantitative model for the dynamics of target recognition and off-target rejection by the CRISPR-Cas Cascade complex," Nature Communications, Nature, vol. 13(1), pages 1-13, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sundaram Acharya & Asgar Hussain Ansari & Prosad Kumar Das & Seiichi Hirano & Meghali Aich & Riya Rauthan & Sudipta Mahato & Savitri Maddileti & Sajal Sarkar & Manoj Kumar & Rhythm Phutela & Sneha Gul, 2024. "PAM-flexible Engineered FnCas9 variants for robust and ultra-precise genome editing and diagnostics," Nature Communications, Nature, vol. 15(1), pages 1-23, December.
    2. Péter István Kulcsár & András Tálas & Zoltán Ligeti & Eszter Tóth & Zsófia Rakvács & Zsuzsa Bartos & Sarah Laura Krausz & Ágnes Welker & Vanessza Laura Végi & Krisztina Huszár & Ervin Welker, 2023. "A cleavage rule for selection of increased-fidelity SpCas9 variants with high efficiency and no detectable off-targets," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    3. Jianli Tao & Daniel E. Bauer & Roberto Chiarle, 2023. "Assessing and advancing the safety of CRISPR-Cas tools: from DNA to RNA editing," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    4. András Tálas & Dorottya A. Simon & Péter I. Kulcsár & Éva Varga & Sarah L. Krausz & Ervin Welker, 2021. "BEAR reveals that increased fidelity variants can successfully reduce the mismatch tolerance of adenine but not cytosine base editors," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    5. Burcu Bestas & Sandra Wimberger & Dmitrii Degtev & Alexandra Madsen & Antje K. Rottner & Fredrik Karlsson & Sergey Naumenko & Megan Callahan & Julia Liz Touza & Margherita Francescatto & Carl Ivar Möl, 2023. "A Type II-B Cas9 nuclease with minimized off-targets and reduced chromosomal translocations in vivo," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    6. Kazuki Kato & Sae Okazaki & Soumya Kannan & Han Altae-Tran & F. Esra Demircioglu & Yukari Isayama & Junichiro Ishikawa & Masahiro Fukuda & Rhiannon K. Macrae & Tomohiro Nishizawa & Kira S. Makarova & , 2022. "Structure of the IscB–ωRNA ribonucleoprotein complex, the likely ancestor of CRISPR-Cas9," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    7. Giulia I. Corsi & Kunli Qu & Ferhat Alkan & Xiaoguang Pan & Yonglun Luo & Jan Gorodkin, 2022. "CRISPR/Cas9 gRNA activity depends on free energy changes and on the target PAM context," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    8. Gregory W. Goldberg & Manjunatha Kogenaru & Sarah Keegan & Max A. B. Haase & Larisa Kagermazova & Mauricio A. Arias & Kenenna Onyebeke & Samantha Adams & Daniel K. Beyer & David Fenyö & Marcus B. Noye, 2024. "Engineered transcription-associated Cas9 targeting in eukaryotic cells," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    9. Jianhang Yin & Rusen Lu & Changchang Xin & Yuhong Wang & Xinyu Ling & Dong Li & Weiwei Zhang & Mengzhu Liu & Wutao Xie & Lingyun Kong & Wen Si & Ping Wei & Bingbing Xiao & Hsiang-Ying Lee & Tao Liu & , 2022. "Cas9 exo-endonuclease eliminates chromosomal translocations during genome editing," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    10. Jian Wang & Ke Wang & Zhe Deng & Zhiyu Zhong & Guo Sun & Qing Mei & Fuling Zhou & Zixin Deng & Yuhui Sun, 2024. "Engineered cytosine base editor enabling broad-scope and high-fidelity gene editing in Streptomyces," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    11. Dmitrii Degtev & Jack Bravo & Aikaterini Emmanouilidi & Aleksandar Zdravković & Oi Kuan Choong & Julia Liz Touza & Niklas Selfjord & Isabel Weisheit & Margherita Francescatto & Pinar Akcakaya & Michel, 2024. "Engineered PsCas9 enables therapeutic genome editing in mouse liver with lipid nanoparticles," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    12. Marius Rutkauskas & Inga Songailiene & Patrick Irmisch & Felix E. Kemmerich & Tomas Sinkunas & Virginijus Siksnys & Ralf Seidel, 2022. "A quantitative model for the dynamics of target recognition and off-target rejection by the CRISPR-Cas Cascade complex," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    13. Jiajia Lin & Ming Jin & Dong Yang & Zhifang Li & Yu Zhang & Qingquan Xiao & Yin Wang & Yuyang Yu & Xiumei Zhang & Zhurui Shao & Linyu Shi & Shu Zhang & Wan-jin Chen & Ning Wang & Shiwen Wu & Hui Yang , 2024. "Adenine base editing-mediated exon skipping restores dystrophin in humanized Duchenne mouse model," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    14. Grace N. Hibshman & Jack P. K. Bravo & Matthew M. Hooper & Tyler L. Dangerfield & Hongshan Zhang & Ilya J. Finkelstein & Kenneth A. Johnson & David W. Taylor, 2024. "Unraveling the mechanisms of PAMless DNA interrogation by SpRY-Cas9," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    15. Lukas Möller & Eric J. Aird & Markus S. Schröder & Lena Kobel & Lucas Kissling & Lilly van de Venn & Jacob E. Corn, 2022. "Recursive Editing improves homology-directed repair through retargeting of undesired outcomes," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    16. G. Cullot & J. Boutin & S. Fayet & F. Prat & J. Rosier & D. Cappellen & I. Lamrissi & P. Pennamen & J. Bouron & S. Amintas & C. Thibault & I. Moranvillier & E. Laharanne & J. P. Merlio & V. Guyonnet-D, 2023. "Cell cycle arrest and p53 prevent ON-target megabase-scale rearrangements induced by CRISPR-Cas9," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    17. Jianhang Yin & Kailun Fang & Yanxia Gao & Liqiong Ou & Shaopeng Yuan & Changchang Xin & Weiwei Wu & Wei-wei Wu & Jiaxu Hong & Hui Yang & Jiazhi Hu, 2022. "Safeguarding genome integrity during gene-editing therapy in a mouse model of age-related macular degeneration," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    18. Péter István Kulcsár & András Tálas & Zoltán Ligeti & Sarah Laura Krausz & Ervin Welker, 2022. "SuperFi-Cas9 exhibits remarkable fidelity but severely reduced activity yet works effectively with ABE8e," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    19. Jian Wang & Yuxi Teng & Ruihua Zhang & Yifei Wu & Lei Lou & Yusong Zou & Michelle Li & Zhong-Ru Xie & Yajun Yan, 2021. "Engineering a PAM-flexible SpdCas9 variant as a universal gene repressor," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    20. Ye Cai & Huifen Cao & Fang Wang & Yufei Zhang & Philipp Kapranov, 2022. "Complex genomic patterns of abasic sites in mammalian DNA revealed by a high-resolution SSiNGLe-AP method," Nature Communications, Nature, vol. 13(1), pages 1-21, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28994-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.