IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-28861-0.html
   My bibliography  Save this article

An enhancer variant at 16q22.1 predisposes to hepatocellular carcinoma via regulating PRMT7 expression

Author

Listed:
  • Ting Shen

    (Nanfang Hospital, Southern Medical University
    Central South University)

  • Ting Ni

    (Fudan University)

  • Jiaxuan Chen

    (Nanfang Hospital, Southern Medical University)

  • Haitao Chen

    (Nanfang Hospital, Southern Medical University
    Sun Yat-sen University)

  • Xiaopin Ma

    (Fudan University)

  • Guangwen Cao

    (Naval Medical University)

  • Tianzhi Wu

    (Southern Medical University)

  • Haisheng Xie

    (Nanfang Hospital, Southern Medical University)

  • Bin Zhou

    (Nanfang Hospital, Southern Medical University)

  • Gang Wei

    (Fudan University)

  • Hexige Saiyin

    (Fudan University)

  • Suqin Shen

    (Fudan University)

  • Peng Yu

    (Fudan University)

  • Qianyi Xiao

    (Fudan University)

  • Hui Liu

    (Guangzhou Medical University)

  • Yuzheng Gao

    (Medical College of Soochow University)

  • Xidai Long

    (Youjiang Medical College for Nationalities)

  • Jianhua Yin

    (Naval Medical University)

  • Yanfang Guo

    (Southern Medical University)

  • Jiaxue Wu

    (Fudan University)

  • Gong-Hong Wei

    (University of Oulu
    Fudan University)

  • Jinlin Hou

    (Nanfang Hospital, Southern Medical University)

  • De-Ke Jiang

    (Nanfang Hospital, Southern Medical University)

Abstract

Most cancer causal variants are found in gene regulatory elements, e.g., enhancers. However, enhancer variants predisposing to hepatocellular carcinoma (HCC) remain unreported. Here we conduct a genome-wide survey of HCC-susceptible enhancer variants through a three-stage association study in 11,958 individuals and identify rs73613962 (T > G) within the intronic region of PRMT7 at 16q22.1 as a susceptibility locus of HCC (OR = 1.41, P = 6.02 × 10−10). An enhancer dual-luciferase assay indicates that the rs73613962-harboring region has allele-specific enhancer activity. CRISPR-Cas9/dCas9 experiments further support the enhancer activity of this region to regulate PRMT7 expression. Mechanistically, transcription factor HNF4A binds to this enhancer region, with preference to the risk allele G, to promote PRMT7 expression. PRMT7 upregulation contributes to in vitro, in vivo, and clinical HCC-associated phenotypes, possibly by affecting the p53 signaling pathway. This concept of HCC pathogenesis may open a promising window for HCC prevention/treatment.

Suggested Citation

  • Ting Shen & Ting Ni & Jiaxuan Chen & Haitao Chen & Xiaopin Ma & Guangwen Cao & Tianzhi Wu & Haisheng Xie & Bin Zhou & Gang Wei & Hexige Saiyin & Suqin Shen & Peng Yu & Qianyi Xiao & Hui Liu & Yuzheng , 2022. "An enhancer variant at 16q22.1 predisposes to hepatocellular carcinoma via regulating PRMT7 expression," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28861-0
    DOI: 10.1038/s41467-022-28861-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-28861-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-28861-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Danny Leung & Inkyung Jung & Nisha Rajagopal & Anthony Schmitt & Siddarth Selvaraj & Ah Young Lee & Chia-An Yen & Shin Lin & Yiing Lin & Yunjiang Qiu & Wei Xie & Feng Yue & Manoj Hariharan & Pradipta , 2015. "Integrative analysis of haplotype-resolved epigenomes across human tissues," Nature, Nature, vol. 518(7539), pages 350-354, February.
    2. Jason Ernst & Pouya Kheradpour & Tarjei S. Mikkelsen & Noam Shoresh & Lucas D. Ward & Charles B. Epstein & Xiaolan Zhang & Li Wang & Robbyn Issner & Michael Coyne & Manching Ku & Timothy Durham & Mano, 2011. "Mapping and analysis of chromatin state dynamics in nine human cell types," Nature, Nature, vol. 473(7345), pages 43-49, May.
    3. Lijing Yao & Yu Gyoung Tak & Benjamin P. Berman & Peggy J. Farnham, 2014. "Functional annotation of colon cancer risk SNPs," Nature Communications, Nature, vol. 5(1), pages 1-13, December.
    4. Derek A. Oldridge & Andrew C. Wood & Nina Weichert-Leahey & Ian Crimmins & Robyn Sussman & Cynthia Winter & Lee D. McDaniel & Maura Diamond & Lori S. Hart & Shizhen Zhu & Adam D. Durbin & Brian J. Abr, 2015. "Genetic predisposition to neuroblastoma mediated by a LMO1 super-enhancer polymorphism," Nature, Nature, vol. 528(7582), pages 418-421, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Deblina Banerjee & Sukriti Bagchi & Zhihui Liu & Hsien-Chao Chou & Man Xu & Ming Sun & Sara Aloisi & Zalman Vaksman & Sharon J. Diskin & Mark Zimmerman & Javed Khan & Berkley Gryder & Carol J. Thiele, 2024. "Lineage specific transcription factor waves reprogram neuroblastoma from self-renewal to differentiation," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    2. Andrea Wilderman & Eva D’haene & Machteld Baetens & Tara N. Yankee & Emma Wentworth Winchester & Nicole Glidden & Ellen Roets & Jo Dorpe & Sandra Janssens & Danny E. Miller & Miranda Galey & Kari M. B, 2024. "A distant global control region is essential for normal expression of anterior HOXA genes during mouse and human craniofacial development," Nature Communications, Nature, vol. 15(1), pages 1-23, December.
    3. Seungsoo Hahn & Dongsup Kim, 2015. "Identifying and Reducing Systematic Errors in Chromosome Conformation Capture Data," PLOS ONE, Public Library of Science, vol. 10(12), pages 1-17, December.
    4. Ye Cai & Huifen Cao & Fang Wang & Yufei Zhang & Philipp Kapranov, 2022. "Complex genomic patterns of abasic sites in mammalian DNA revealed by a high-resolution SSiNGLe-AP method," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
    5. Chirag Nepal & Jesper B. Andersen, 2023. "Alternative promoters in CpG depleted regions are prevalently associated with epigenetic misregulation of liver cancer transcriptomes," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    6. Haoxi Chai & Harianto Tjong & Peng Li & Wei Liao & Ping Wang & Chee Hong Wong & Chew Yee Ngan & Warren J. Leonard & Chia-Lin Wei & Yijun Ruan, 2023. "ChIATAC is an efficient strategy for multi-omics mapping of 3D epigenomes from low-cell inputs," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    7. Zhangyuan Pan & Yuelin Yao & Hongwei Yin & Zexi Cai & Ying Wang & Lijing Bai & Colin Kern & Michelle Halstead & Ganrea Chanthavixay & Nares Trakooljul & Klaus Wimmers & Goutam Sahana & Guosheng Su & M, 2021. "Pig genome functional annotation enhances the biological interpretation of complex traits and human disease," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    8. Zhaohui Qin & Ben Li & Karen N. Conneely & Hao Wu & Ming Hu & Deepak Ayyala & Yongseok Park & Victor X. Jin & Fangyuan Zhang & Han Zhang & Li Li & Shili Lin, 2016. "Statistical Challenges in Analyzing Methylation and Long-Range Chromosomal Interaction Data," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 8(2), pages 284-309, October.
    9. Maurizio Mangolini & Alba Maiques-Diaz & Stella Charalampopoulou & Elena Gerhard-Hartmann & Johannes Bloehdorn & Andrew Moore & Giorgia Giachetti & Junyan Lu & Valar Nila Roamio Franklin & Chandra Sek, 2022. "Viral transduction of primary human lymphoma B cells reveals mechanisms of NOTCH-mediated immune escape," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
    10. Carlos Rivera & Hun-Goo Lee & Anna Lappala & Danni Wang & Verónica Noches & Montserrat Olivares-Costa & Marcela Sjöberg-Herrera & Jeannie T. Lee & María Estela Andrés, 2022. "Unveiling RCOR1 as a rheostat at transcriptionally permissive chromatin," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    11. Noah Dukler & Mehreen R. Mughal & Ritika Ramani & Yi-Fei Huang & Adam Siepel, 2022. "Extreme purifying selection against point mutations in the human genome," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    12. Julia Truch & Damien J. Downes & Caroline Scott & E. Ravza Gür & Jelena M. Telenius & Emmanouela Repapi & Ron Schwessinger & Matthew Gosden & Jill M. Brown & Stephen Taylor & Pak Leng Cheong & Jim R. , 2022. "The chromatin remodeller ATRX facilitates diverse nuclear processes, in a stochastic manner, in both heterochromatin and euchromatin," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    13. Rachel K. Lex & Weiqiang Zhou & Zhicheng Ji & Kristin N. Falkenstein & Kaleigh E. Schuler & Kathryn E. Windsor & Joseph D. Kim & Hongkai Ji & Steven A. Vokes, 2022. "GLI transcriptional repression is inert prior to Hedgehog pathway activation," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    14. Peter H. Dixon & Adam P. Levine & Inês Cebola & Melanie M. Y. Chan & Aliya S. Amin & Anshul Aich & Monika Mozere & Hannah Maude & Alice L. Mitchell & Jun Zhang & Jenny Chambers & Argyro Syngelaki & Je, 2022. "GWAS meta-analysis of intrahepatic cholestasis of pregnancy implicates multiple hepatic genes and regulatory elements," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    15. Zhaoyun Ding & Ting Cai & Jupei Tang & Hanxiao Sun & Xinyi Qi & Yunpeng Zhang & Yan Ji & Liyun Yuan & Huidan Chang & Yanhui Ma & Hong Zhou & Li Li & Huiming Sheng & Ju Qiu, 2022. "Setd2 supports GATA3+ST2+ thymic-derived Treg cells and suppresses intestinal inflammation," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    16. Jennifer P. Nguyen & Timothy D. Arthur & Kyohei Fujita & Bianca M. Salgado & Margaret K. R. Donovan & Hiroko Matsui & Ji Hyun Kim & Agnieszka D’Antonio-Chronowska & Matteo D’Antonio & Kelly A. Frazer, 2023. "eQTL mapping in fetal-like pancreatic progenitor cells reveals early developmental insights into diabetes risk," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    17. Carlos Olmeda-Gómez & Carlos Romá-Mateo & Maria-Antonia Ovalle-Perandones, 2019. "Overview of trends in global epigenetic research (2009–2017)," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(3), pages 1545-1574, June.
    18. Chaitali Chakraborty & Itzel Nissen & Craig A. Vincent & Anna-Carin Hägglund & Andreas Hörnblad & Silvia Remeseiro, 2023. "Rewiring of the promoter-enhancer interactome and regulatory landscape in glioblastoma orchestrates gene expression underlying neurogliomal synaptic communication," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    19. Mijeong Kim & Shili Lin, 2020. "Characterization of histone modification patterns and prediction of novel promoters using functional principal component analysis," PLOS ONE, Public Library of Science, vol. 15(5), pages 1-16, May.
    20. Xintao Qiu & Nadia Boufaied & Tarek Hallal & Avery Feit & Anna Polo & Adrienne M. Luoma & Walaa Alahmadi & Janie Larocque & Giorgia Zadra & Yingtian Xie & Shengqing Gu & Qin Tang & Yi Zhang & Sudeepa , 2022. "MYC drives aggressive prostate cancer by disrupting transcriptional pause release at androgen receptor targets," Nature Communications, Nature, vol. 13(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28861-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.